BELLS: A Framework Towards Future Proof Benchmarks for the Evaluation of LLM Safeguards
- URL: http://arxiv.org/abs/2406.01364v1
- Date: Mon, 3 Jun 2024 14:32:30 GMT
- Title: BELLS: A Framework Towards Future Proof Benchmarks for the Evaluation of LLM Safeguards
- Authors: Diego Dorn, Alexandre Variengien, Charbel-Raphaƫl Segerie, Vincent Corruble,
- Abstract summary: We introduce the Benchmarks for the Evaluation of LLM Safeguards (BELLS)
BELLS is a structured collection of tests, organized into three categories: established failure tests, emerging failure tests and next-gen architecture tests.
We implement and share the first next-gen architecture test, using the MACHIAVELLI environment, along with an interactive visualization of the dataset.
- Score: 43.86118338226387
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Input-output safeguards are used to detect anomalies in the traces produced by Large Language Models (LLMs) systems. These detectors are at the core of diverse safety-critical applications such as real-time monitoring, offline evaluation of traces, and content moderation. However, there is no widely recognized methodology to evaluate them. To fill this gap, we introduce the Benchmarks for the Evaluation of LLM Safeguards (BELLS), a structured collection of tests, organized into three categories: (1) established failure tests, based on already-existing benchmarks for well-defined failure modes, aiming to compare the performance of current input-output safeguards; (2) emerging failure tests, to measure generalization to never-seen-before failure modes and encourage the development of more general safeguards; (3) next-gen architecture tests, for more complex scaffolding (such as LLM-agents and multi-agent systems), aiming to foster the development of safeguards that could adapt to future applications for which no safeguard currently exists. Furthermore, we implement and share the first next-gen architecture test, using the MACHIAVELLI environment, along with an interactive visualization of the dataset.
Related papers
- LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models [51.55869466207234]
Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting.<n>We introduce LLMEval-3, a framework for dynamic evaluation of LLMs.<n>LLEval-3 is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run.
arXiv Detail & Related papers (2025-08-07T14:46:30Z) - On Evaluating Performance of LLM Inference Serving Systems [11.712948114304925]
We identify recurring anti-patterns across three key dimensions: Baseline Fairness, Evaluation setup, and Metric Design.<n>These anti-patterns are uniquely problematic for Large Language Model (LLM) inference due to its dual-phase nature.<n>We provide a comprehensive checklist derived from our analysis, establishing a framework for recognizing and avoiding these anti-patterns.
arXiv Detail & Related papers (2025-07-11T20:58:21Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
Embodied agents exhibit immense potential across a multitude of domains.
Existing research predominantly concentrates on the security of general large language models.
This paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents.
arXiv Detail & Related papers (2025-04-22T08:34:35Z) - Everything You Wanted to Know About LLM-based Vulnerability Detection But Were Afraid to Ask [30.819697001992154]
Large Language Models are a promising tool for automated vulnerability detection.
Despite widespread adoption, a critical question remains: Are LLMs truly effective at detecting real-world vulnerabilities?
This paper challenges three widely held community beliefs: that LLMs are (i) unreliable, (ii) insensitive to code patches, and (iii) performance-plateaued across model scales.
arXiv Detail & Related papers (2025-04-18T05:32:47Z) - The Emperor's New Clothes in Benchmarking? A Rigorous Examination of Mitigation Strategies for LLM Benchmark Data Contamination [18.05548914181797]
Benchmark Data Contamination (BDC)-the inclusion of benchmark testing samples in the training set-has raised increasing concerns in Large Language Model (LLM) evaluation.
To address this, researchers have proposed various mitigation strategies to update existing benchmarks, including modifying original questions or generating new ones based on them.
Previous assessment methods, such as accuracy drop and accuracy matching, focus solely on aggregate accuracy, often leading to incomplete or misleading conclusions.
arXiv Detail & Related papers (2025-03-20T17:55:04Z) - SEOE: A Scalable and Reliable Semantic Evaluation Framework for Open Domain Event Detection [70.23196257213829]
We propose a scalable and reliable Semantic-level Evaluation framework for Open domain Event detection.
Our proposed framework first constructs a scalable evaluation benchmark that currently includes 564 event types covering 7 major domains.
We then leverage large language models (LLMs) as automatic evaluation agents to compute a semantic F1-score, incorporating fine-grained definitions of semantically similar labels.
arXiv Detail & Related papers (2025-03-05T09:37:05Z) - PredictaBoard: Benchmarking LLM Score Predictability [50.47497036981544]
Large Language Models (LLMs) often fail unpredictably.
This poses a significant challenge to ensuring their safe deployment.
We present PredictaBoard, a novel collaborative benchmarking framework.
arXiv Detail & Related papers (2025-02-20T10:52:38Z) - Do Large Language Model Benchmarks Test Reliability? [66.1783478365998]
We investigate how well current benchmarks quantify model reliability.
Motivated by this gap in the evaluation of reliability, we propose the concept of so-called platinum benchmarks.
We evaluate a wide range of models on these platinum benchmarks and find that, indeed, frontier LLMs still exhibit failures on simple tasks.
arXiv Detail & Related papers (2025-02-05T18:58:19Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
Large Language Models (LLMs) excel at standardized tests while failing to demonstrate genuine language understanding and adaptability.
Our systematic analysis of NLP evaluation frameworks reveals pervasive vulnerabilities across the evaluation spectrum.
We lay the groundwork for new evaluation methods that resist manipulation, minimize data contamination, and assess domain-specific tasks.
arXiv Detail & Related papers (2024-12-02T20:49:21Z) - SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
We develop a novel benchmark to assess the generalization of large language model (LLM) safety across various tasks and prompt types.
This benchmark integrates both generative and discriminative evaluation tasks and includes extended data to examine the impact of prompt engineering and jailbreak on LLM safety.
Our assessment reveals that most LLMs perform worse on discriminative tasks than generative ones, and are highly susceptible to prompts, indicating poor generalization in safety alignment.
arXiv Detail & Related papers (2024-10-29T11:47:01Z) - VERA: Validation and Evaluation of Retrieval-Augmented Systems [5.709401805125129]
VERA is a framework designed to enhance the transparency and reliability of outputs from large language models (LLMs)
We show how VERA can strengthen decision-making processes and trust in AI applications.
arXiv Detail & Related papers (2024-08-16T21:59:59Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models [41.772263447213234]
Large language models (LLMs) are known to be trained on vast amounts of data, which may unintentionally or intentionally include data from commonly used benchmarks.
This inclusion can lead to cheatingly high scores on model leaderboards, yet result in disappointing performance in real-world applications.
We introduce PaCoST, a Paired Confidence Significance Testing to effectively detect benchmark contamination in LLMs.
arXiv Detail & Related papers (2024-06-26T13:12:40Z) - Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations [76.19419888353586]
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations.
We present our efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms.
arXiv Detail & Related papers (2024-03-09T21:07:16Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection [55.70982767084996]
A critical yet frequently overlooked challenge in the field of deepfake detection is the lack of a standardized, unified, comprehensive benchmark.
We present the first comprehensive benchmark for deepfake detection, called DeepfakeBench, which offers three key contributions.
DeepfakeBench contains 15 state-of-the-art detection methods, 9CL datasets, a series of deepfake detection evaluation protocols and analysis tools, as well as comprehensive evaluations.
arXiv Detail & Related papers (2023-07-04T01:34:41Z) - Unifying Evaluation of Machine Learning Safety Monitors [0.0]
runtime monitors have been developed to detect prediction errors and keep the system in a safe state during operations.
This paper introduces three unified safety-oriented metrics, representing the safety benefits of the monitor (Safety Gain) and the remaining safety gaps after using it (Residual Hazard)
Three use-cases (classification, drone landing, and autonomous driving) are used to demonstrate how metrics from the literature can be expressed in terms of the proposed metrics.
arXiv Detail & Related papers (2022-08-31T07:17:42Z) - Benchmarking Safety Monitors for Image Classifiers with Machine Learning [0.0]
High-accurate machine learning (ML) image classifiers cannot guarantee that they will not fail at operation.
The use of fault tolerance mechanisms such as safety monitors is a promising direction to keep the system in a safe state.
This paper aims at establishing a baseline framework for benchmarking monitors for ML image classifiers.
arXiv Detail & Related papers (2021-10-04T07:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.