論文の概要: CoNO: Complex Neural Operator for Continous Dynamical Physical Systems
- arxiv url: http://arxiv.org/abs/2406.02597v1
- Date: Sat, 1 Jun 2024 14:32:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:39:37.313999
- Title: CoNO: Complex Neural Operator for Continous Dynamical Physical Systems
- Title(参考訳): CoNO:連続力学系のための複雑神経演算子
- Authors: Karn Tiwari, N M Anoop Krishnan, A P Prathosh,
- Abstract要約: 差分フーリエ変換(FrFT)を用いて積分カーネルをパラメータ化する複素ニューラル演算子(CoNO)を導入する。
実証的には、CoNOは一貫して最先端のパフォーマンスを達成しており、平均的な相対的な利益は10.9%である。
CoNOはまた、少量のデータから学ぶ能力も示しています -- トレーニングデータの60%で、次の最高のモデルと同じパフォーマンスを提供します。
- 参考スコア(独自算出の注目度): 4.963536645449426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural operators extend data-driven models to map between infinite-dimensional functional spaces. While these operators perform effectively in either the time or frequency domain, their performance may be limited when applied to non-stationary spatial or temporal signals whose frequency characteristics change with time. Here, we introduce Complex Neural Operator (CoNO) that parameterizes the integral kernel using Fractional Fourier Transform (FrFT), better representing non-stationary signals in a complex-valued domain. Theoretically, we prove the universal approximation capability of CoNO. We perform an extensive empirical evaluation of CoNO on seven challenging partial differential equations (PDEs), including regular grids, structured meshes, and point clouds. Empirically, CoNO consistently attains state-of-the-art performance, showcasing an average relative gain of 10.9%. Further, CoNO exhibits superior performance, outperforming all other models in additional tasks such as zero-shot super-resolution and robustness to noise. CoNO also exhibits the ability to learn from small amounts of data -- giving the same performance as the next best model with just 60% of the training data. Altogether, CoNO presents a robust and superior model for modeling continuous dynamical systems, providing a fillip to scientific machine learning.
- Abstract(参考訳): ニューラルネットワークは、無限次元の関数空間間のマップにデータ駆動モデルを拡張する。
これらの演算子は時間領域または周波数領域で効果的に動作するが、周波数特性が時間とともに変化する非定常的空間信号や時間信号に適用した場合、その性能は制限される。
本稿では、FrFT(Fractional Fourier Transform)を用いて積分カーネルをパラメータ化する複雑なニューラルネットワーク(CoNO)を提案する。
理論的には、CoNOの普遍近似能力を証明する。
我々は,正則格子,構造化メッシュ,点雲を含む7つの挑戦的偏微分方程式(PDE)に対して,CoNOを広範囲に評価する。
実証的には、CoNOは一貫して最先端のパフォーマンスを達成しており、平均的な相対的な利益は10.9%である。
さらに、CoNOは優れた性能を示し、ゼロショット超解像やノイズに対する堅牢性など、他の全てのモデルよりも優れている。
CoNOはまた、少量のデータから学ぶ能力も示しています -- トレーニングデータの60%で、次の最高のモデルと同じパフォーマンスを提供します。
さらに、CoNOは連続力学系をモデリングするための堅牢で優れたモデルを示し、科学的な機械学習の補足を提供する。
関連論文リスト
- Dilated convolution neural operator for multiscale partial differential equations [11.093527996062058]
本稿では,多スケール偏微分方程式に対するDilated Convolutional Neural Operator (DCNO)を提案する。
DCNOアーキテクチャは、低計算コストを維持しながら、高周波と低周波の両方の特徴を効果的にキャプチャする。
我々は,DCNOが精度と計算コストの最適なバランスをとることを示し,マルチスケール演算子学習に有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-07-16T08:17:02Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - CoNO: Complex Neural Operator for Continuous Dynamical Systems [10.326780211731263]
複素分数フーリエ領域の積分核をパラメータ化する複素ニューラル演算子(CoNO)を導入する。
このモデルは, 1つの複素分数フーリエ変換を用いて, 基礎となる偏微分方程式を効果的に捕捉することを示す。
論文 参考訳(メタデータ) (2023-10-03T14:38:12Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
球面幾何学の演算子を学習するための球面FNO(SFNO)を紹介する。
SFNOは、気候力学の機械学習に基づくシミュレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-06T16:27:17Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
本稿では,FNOに基づく解法を効率的に学習するための新しいフレームワークであるFourier Neural operator (PFNO)を提案する。
数値実験により、複雑な速度モデルによるFNOとPFNOの精度が示された。
PFNOは、従来の有限差分法と比較して、大規模なテストデータセットの計算効率が高いことを認めている。
論文 参考訳(メタデータ) (2022-09-25T22:25:57Z) - Bounding The Rademacher Complexity of Fourier Neural Operator [3.4960814625958787]
フーリエニューラル演算子(フーリエニューラル演算子、英: Fourier Neural operator、FNO)は、物理学に着想を得た機械学習手法の1つである。
本研究では,特定の群ノルムに基づくFNOのラデマッハ複雑性の境界について検討した。
さらに, 経験的一般化誤差とFNOのキャパシティの相関について検討した。
論文 参考訳(メタデータ) (2022-09-12T11:11:43Z) - Generative Adversarial Neural Operators [59.21759531471597]
本稿では,無限次元関数空間上の確率学習のための生成モデルであるGANOを提案する。
GANOは、ジェネレータニューラル演算子と識別器ニューラル関数の2つの主要成分から構成される。
入力関数と出力関数が共に GRF からのサンプルである場合のGANO を実験的に検討し、その性能を有限次元の GAN と比較する。
論文 参考訳(メタデータ) (2022-05-06T05:12:22Z) - Factorized Fourier Neural Operators [77.47313102926017]
Factorized Fourier Neural Operator (F-FNO) は偏微分方程式をシミュレートする学習法である。
我々は,数値解法よりも桁違いに高速に動作しながら,誤差率2%を維持していることを示す。
論文 参考訳(メタデータ) (2021-11-27T03:34:13Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。