論文の概要: Error Analysis and Numerical Algorithm for PDE Approximation with Hidden-Layer Concatenated Physics Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2406.06350v1
- Date: Mon, 10 Jun 2024 15:12:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 13:38:29.268665
- Title: Error Analysis and Numerical Algorithm for PDE Approximation with Hidden-Layer Concatenated Physics Informed Neural Networks
- Title(参考訳): Hidden-Layer Concatenated Physics Informed Neural Networksを用いたPDE近似の誤差解析と数値アルゴリズム
- Authors: Yianxia Qian, Yongchao Zhang, Suchuan Dong,
- Abstract要約: 本稿では,隠れた物理情報ニューラルネットワーク(HLConcPINN)を提案する。
隠れたフィードフォワードニューラルネットワーク、修正されたブロックタイムマーチング戦略、偏微分方程式(PDE)を近似するための物理情報アプローチを組み合わせる。
本手法の近似誤差は, 長期間の地平線を有する動的シミュレーションのトレーニング損失によって効果的に制御できることを示す。
- 参考スコア(独自算出の注目度): 0.9693477883827689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the hidden-layer concatenated physics informed neural network (HLConcPINN) method, which combines hidden-layer concatenated feed-forward neural networks, a modified block time marching strategy, and a physics informed approach for approximating partial differential equations (PDEs). We analyze the convergence properties and establish the error bounds of this method for two types of PDEs: parabolic (exemplified by the heat and Burgers' equations) and hyperbolic (exemplified by the wave and nonlinear Klein-Gordon equations). We show that its approximation error of the solution can be effectively controlled by the training loss for dynamic simulations with long time horizons. The HLConcPINN method in principle allows an arbitrary number of hidden layers not smaller than two and any of the commonly-used smooth activation functions for the hidden layers beyond the first two, with theoretical guarantees. This generalizes several recent neural-network techniques, which have theoretical guarantees but are confined to two hidden layers in the network architecture and the $\tanh$ activation function. Our theoretical analyses subsequently inform the formulation of appropriate training loss functions for these PDEs, leading to physics informed neural network (PINN) type computational algorithms that differ from the standard PINN formulation. Ample numerical experiments are presented based on the proposed algorithm to validate the effectiveness of this method and confirm aspects of the theoretical analyses.
- Abstract(参考訳): 本稿では,隠れ層結合フィードフォワードニューラルネットワーク,改良ブロック時間マーチング戦略,偏微分方程式 (PDE) 近似のための物理情報アプローチを組み合わせたHLConcPINN法を提案する。
パラボリック(熱とバーガースの方程式で例示される)と双曲(波動と非線形クライン=ゴードン方程式で例示される)の2種類のPDEに対して、収束特性を分析し、この手法の誤差境界を確立する。
本手法の近似誤差は, 長期間の地平線を有する動的シミュレーションのトレーニング損失によって効果的に制御できることを示す。
HLConcPINN法は原則として2よりも小さい隠蔽層を任意に数えることができ、理論上は2つ以上の隠蔽層に対して一般的に使用されるスムーズなアクティベーション関数のどれかが有効である。
これは、理論的保証を持つが、ネットワークアーキテクチャと$\tanh$アクティベーション関数の2つの隠された層に制限される、最近のニューラル・ネットワーク・テクニックを一般化する。
これらのPDEに対する適切なトレーニング損失関数の定式化を理論的に行い、標準のPINN定式化とは異なる物理情報ニューラルネットワーク(PINN)型計算アルゴリズムを導いた。
提案手法の有効性を検証し,理論解析の側面を検証するために,提案手法を基礎とした数値実験を行った。
関連論文リスト
- ASPINN: An asymptotic strategy for solving singularly perturbed differential equations [12.14934707131722]
本稿では,物理インフォームドニューラルネットワーク (PINN) と一般結合型物理インフォームドニューラルネットワーク (GKPINN) を一般化した漸近型物理インフォームドニューラルネットワーク (ASPINN) を提案する。
ASPINNは、境界層に指数層が配置されているため、SPDEを解くのに強力な適合性を持つ。
本稿では,ASPINN法が境界層問題において有望であることを示す,多様なSPDEのクラスを解くことでASPINNの効果を実証する。
論文 参考訳(メタデータ) (2024-09-20T03:25:17Z) - SEF: A Method for Computing Prediction Intervals by Shifting the Error Function in Neural Networks [0.0]
本稿では,このカテゴリに属する新しい手法としてSEF(Shifting the Error Function)法を提案する。
提案手法では,1つのニューラルネットワークを3回トレーニングすることで,与えられた問題に対して対応する上境界と下限とを推定する。
この革新的なプロセスは、PIを効果的に生成し、不確実性定量化のための堅牢で効率的な技術をもたらす。
論文 参考訳(メタデータ) (2024-09-08T19:46:45Z) - General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
我々は,Singular Perturbation Differential Equations(SPDE)の解法として,GKPINN(General-Kindred Physics-Informed Neural Network)を提案する。
この手法は, 境界層の事前知識を方程式から利用し, 境界層を近似するPINNを支援する新しいネットワークを確立する。
GKPINNは,確立したPINN法と比較して,2~4桁の誤差を2~4桁に削減し,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2024-08-27T02:03:22Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Solving inverse-PDE problems with physics-aware neural networks [0.0]
偏微分方程式の逆問題における未知の場を見つけるための新しい枠組みを提案する。
我々は,ディープニューラルネットワークの高表現性を,既存の数値アルゴリズムの精度と信頼性とを融合した普遍関数推定器とする。
論文 参考訳(メタデータ) (2020-01-10T18:46:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。