論文の概要: Active search for Bifurcations
- arxiv url: http://arxiv.org/abs/2406.11141v1
- Date: Mon, 17 Jun 2024 02:01:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 18:43:55.335745
- Title: Active search for Bifurcations
- Title(参考訳): Bifurcations のアクティブサーチ
- Authors: Yorgos M. Psarellis, Themistoklis P. Sapsis, Ioannis G. Kevrekidis,
- Abstract要約: 本研究では,ベイズ最適化を応用してサドルノードやホップ分岐を発見する能動的学習フレームワークを提案する。
本質的なシステムにおける不確実性定量化の枠組みを提供する。
また、資源限定の宇宙探査システムにおける不確実性定量化のためのフレームワークも提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bifurcations mark qualitative changes of long-term behavior in dynamical systems and can often signal sudden ("hard") transitions or catastrophic events (divergences). Accurately locating them is critical not just for deeper understanding of observed dynamic behavior, but also for designing efficient interventions. When the dynamical system at hand is complex, possibly noisy, and expensive to sample, standard (e.g. continuation based) numerical methods may become impractical. We propose an active learning framework, where Bayesian Optimization is leveraged to discover saddle-node or Hopf bifurcations, from a judiciously chosen small number of vector field observations. Such an approach becomes especially attractive in systems whose state x parameter space exploration is resource-limited. It also naturally provides a framework for uncertainty quantification (aleatoric and epistemic), useful in systems with inherent stochasticity.
- Abstract(参考訳): ビフルケーションは力学系における長期挙動の質的変化を示し、しばしば突然の(硬い)遷移や破滅的な事象(発散)を知らせる。
正確な位置決めは、観察された動的な振る舞いをより深く理解するためにだけでなく、効率的な介入を設計するためにも重要である。
手前の力学系が複雑で、ノイズがあり、サンプリングに費用がかかる場合、標準的な(例えば連続法に基づく)数値法は実用的でない。
ベイズ最適化を応用して,少数のベクトル場観測からサドルノードやホップ分岐を発見する能動的学習フレームワークを提案する。
このようなアプローチは、状態 x パラメータ空間探索がリソース制限のシステムでは特に魅力的になる。
また、本質的な確率性を持つシステムで有用な不確実性定量化(放散虫とてんかん)の枠組みも自然に提供する。
関連論文リスト
- Let's do the time-warp-attend: Learning topological invariants of dynamical systems [3.9735602856280132]
本稿では、動的状態の分類と分岐境界の特徴付けのための、データ駆動型、物理的にインフォームドされたディープラーニングフレームワークを提案する。
超臨界ホップ分岐のパラダイム的ケースに着目し、様々な応用の周期的ダイナミクスをモデル化する。
本手法は, 広範囲な力学系の定性的・長期的挙動に関する貴重な知見を提供し, 大規模物理・生物系における分岐や破滅的な遷移を検出する。
論文 参考訳(メタデータ) (2023-12-14T18:57:16Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - An information field theory approach to Bayesian state and parameter
estimation in dynamical systems [0.0]
本稿では、連続時間決定論的力学系に適した状態とパラメータ推定のためのスケーラブルなベイズ的手法を開発する。
システム応答の関数空間に物理インフォームドされた事前確率測度を構築し、物理を満たす関数がより高い確率で現れるようにする。
論文 参考訳(メタデータ) (2023-06-03T16:36:43Z) - Gentlest ascent dynamics on manifolds defined by adaptively sampled
point-clouds [0.0]
力学系のサドル点を見つけることは、分子系の稀な事象の研究のような実践的な応用において重要な問題である。
GADは、力学系のサドル点を見つけようとする多くのアルゴリズムの1つである。
論文 参考訳(メタデータ) (2023-02-09T03:40:18Z) - A Dynamical System View of Langevin-Based Non-Convex Sampling [84.61544861851907]
非サンプリングは機械学習における重要な課題であり、ディープラーニングにおける非レート最適化の中心であり、その重要性を近似する。
既存の保証は通常、より望ましい最終段階の反復よりも平均距離のみを保持する。
我々は、理論システムからいくつかのツールを活用することにより、上記の問題を解消する新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2022-10-25T09:43:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - Objective discovery of dominant dynamical processes with intelligible
machine learning [0.0]
本稿では,動的状態の同定を最適化問題として定式化する形式的定義を提案する。
本稿では,事前知識やアドホックな定義の必要性を排除した教師なし学習フレームワークを提案する。
我々の手法は、動的システム内でセレンディピティーな発見を可能にする、偏りのないデータ探索への一歩である。
論文 参考訳(メタデータ) (2021-06-21T20:57:23Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。