Quantum Enhanced Sensitivity through Many-Body Bloch Oscillations
- URL: http://arxiv.org/abs/2406.13921v2
- Date: Sun, 25 Aug 2024 15:58:13 GMT
- Title: Quantum Enhanced Sensitivity through Many-Body Bloch Oscillations
- Authors: Hassan Manshouri, Moslem Zarei, Mehdi Abdi, Sougato Bose, Abolfazl Bayat,
- Abstract summary: We study the sensing capacity of non-equilibrium dynamics in quantum systems exhibiting Bloch oscillations.
Our results provide a quantitative ansatz for quantum Fisher information in terms of time, probe size, and the number of excitations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the sensing capacity of non-equilibrium dynamics in quantum systems exhibiting Bloch oscillations. By focusing on the resource efficiency of the probe, quantified by quantum Fisher information, we find different scaling behaviors in two different phases, namely localized and extended. Our results provide a quantitative ansatz for quantum Fisher information in terms of time, probe size, and the number of excitations. In the long-time regime, the quantum Fisher information is a quadratic function of time, touching the Heisenberg limit. The system size scaling drastically depends on the phase changing from super-Heisenberg scaling in the extended phase to size-independent behavior in the localized phase. Furthermore, increasing the number of excitations always enhances the precision of the probe, although, in the interacting systems the enhancement becomes less eminent than the non-interacting probes. This is due to the induced localization by increasing the interaction between the excitations.
Related papers
- Length scale estimation of excited quantum oscillators [0.0]
We show that displaced squeezed states and excited estates of a massive oscillator exhibit Heisenberg scaling of the quantum Fisher information for the length scale.
We construct a sequence of entangled states of two massive oscillators that provides a boost in length scale sensitivity equivalent to appending a third massive oscillator to a non-entangled system.
arXiv Detail & Related papers (2025-01-30T18:52:18Z) - Realization of strongly-interacting Meissner phases in large bosonic flux ladders [36.136619420474766]
We experimentally realize the strongly-interacting Mott-Meissner phase in large-scale bosonic flux ladders with 48 sites at half filling.
Our results demonstrate the feasibility of scaling periodically driven quantum systems to large, strongly correlated phases.
arXiv Detail & Related papers (2024-12-12T17:27:49Z) - Utilizing encoding time as a resource to enhance quantum sensing by probe qubit dephasing [0.14393881918140122]
We study a system in which an impurity qubit is immersed in a quasi-two-dimensional dipolar Bose-Einstein condensate.
The relative dipole-dipole interaction strength is estimated by the probe qubit dephasing.
It is also revealed that the highly non-Markovian effects caused by the roton softening of the excitation spectrum allow long encoding time to serve as a resource for enhancing sensing precision.
arXiv Detail & Related papers (2024-11-29T02:32:05Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Super-Heisenberg scaling in Hamiltonian parameter estimation in the
long-range Kitaev chain [2.3058787297835686]
We consider the estimation of the interaction strength in linear systems with long-range interactions.
We show that quantum control can improve the prefactor of the quantum Fisher information.
arXiv Detail & Related papers (2021-04-14T20:40:40Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.