論文の概要: Classifying Dry Eye Disease Patients from Healthy Controls Using Machine Learning and Metabolomics Data
- arxiv url: http://arxiv.org/abs/2406.14068v1
- Date: Thu, 20 Jun 2024 07:44:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 15:00:17.600280
- Title: Classifying Dry Eye Disease Patients from Healthy Controls Using Machine Learning and Metabolomics Data
- Title(参考訳): 機械学習とメタボロミクスデータを用いたドライアイ病患者の健康管理の分類
- Authors: Sajad Amouei Sheshkal, Morten Gundersen, Michael Alexander Riegler, Øygunn Aass Utheim, Kjell Gunnar Gundersen, Hugo Lewi Hammer,
- Abstract要約: ドライアイ病は眼表面の一般的な疾患であり、患者はアイケアを求める。
ドライアイ病の白内障患者を特定するために,機械学習とメタボロミクス情報を用いて検討した。
- 参考スコア(独自算出の注目度): 2.1823566969645536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dry eye disease is a common disorder of the ocular surface, leading patients to seek eye care. Clinical signs and symptoms are currently used to diagnose dry eye disease. Metabolomics, a method for analyzing biological systems, has been found helpful in identifying distinct metabolites in patients and in detecting metabolic profiles that may indicate dry eye disease at early stages. In this study, we explored using machine learning and metabolomics information to identify which cataract patients suffered from dry eye disease. As there is no one-size-fits-all machine learning model for metabolomics data, choosing the most suitable model can significantly affect the quality of predictions and subsequent metabolomics analyses. To address this challenge, we conducted a comparative analysis of nine machine learning models on three metabolomics data sets from cataract patients with and without dry eye disease. The models were evaluated and optimized using nested k-fold cross-validation. To assess the performance of these models, we selected a set of suitable evaluation metrics tailored to the data set's challenges. The logistic regression model overall performed the best, achieving the highest area under the curve score of 0.8378, balanced accuracy of 0.735, Matthew's correlation coefficient of 0.5147, an F1-score of 0.8513, and a specificity of 0.5667. Additionally, following the logistic regression, the XGBoost and Random Forest models also demonstrated good performance.
- Abstract(参考訳): ドライアイ病は眼表面の一般的な疾患であり、患者はアイケアを求める。
現在、ドライアイ病の診断に臨床症状や症状が用いられている。
生体系を解析する手法であるメタボロミクスは、患者の異なる代謝産物の同定や、初期のドライアイ病を示す代謝プロファイルの検出に有用である。
本研究では, ドライアイ病の白内障患者を特定するために, 機械学習とメタボロミクス情報を用いて検討した。
メタボロミクスデータに適した機械学習モデルが存在しないため、最も適切なモデルを選択することは、予測の品質とその後のメタボロミクス分析に大きな影響を与える可能性がある。
この課題に対処するため,白内障患者の3つのメタボロミクスデータセットを用いた9つの機械学習モデルの比較分析を行った。
モデルをネストしたk-foldクロスバリデーションを用いて評価・最適化した。
これらのモデルの性能を評価するため、データセットの課題に適した評価指標のセットを選択した。
総合的なロジスティック回帰モデルは,曲線スコア0.8378,バランス精度0.735,マシュー相関係数0.5147,F1スコア0.8513,特異度0.5667で最高値を達成した。
さらに、ロジスティック回帰の後、XGBoostとRandom Forestのモデルも優れた性能を示した。
関連論文リスト
- Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
本報告では, 全身性炎症性反応症候群, 早期警戒スコア, クイックシークエンシャル臓器不全評価など, 従来の敗血症スクリーニングツールの限界について検討する。
本稿では,機械学習技術 - ランダムフォレスト, エクストリームグラディエントブースティング, 決定木モデル - を用いて, セプシスの発症を予測することを提案する。
本研究は,これらのモデルについて,精度,精度,リコール,F1スコア,受信器動作特性曲線の下での領域といった重要な指標を用いて,個別かつ組み合わせたメタアンサンブルアプローチで評価する。
論文 参考訳(メタデータ) (2024-07-11T00:51:32Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
本研究はMOST研究のベースラインから被験者(被験者1832名,膝3276名)を抽出した。
PF関節領域は, 側膝X線上の自動ランドマーク検出ツール(BoneFinder)を用いて同定した。
年齢、性別、BMIおよびWOMACスコア、および大腿骨関節X線学的関節炎ステージ(KLスコア)の危険因子について
論文 参考訳(メタデータ) (2023-05-10T06:43:33Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
データから現実的な拡張を自動的に学習することは、生成モデルを用いてラベル効率の良い方法で可能であることを示す。
これらの学習の強化は、モデルをより堅牢で統計的に公平に配布できることを示した。
論文 参考訳(メタデータ) (2023-04-18T18:15:38Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Developing a Machine-Learning Algorithm to Diagnose Age-Related Macular
Degeneration [0.0]
40歳以上で1200万人以上が眼疾患に悩まされている。
眼疾患に対する機械学習アルゴリズムの利用が提案されている。
本研究では,n が 0, -1, ... -6 である場合の学習速度 1 * 10n の6つのモデルを生成し,各モデルに対する f1 スコアを算出した。
論文 参考訳(メタデータ) (2022-01-28T19:25:36Z) - An Interpretable Web-based Glioblastoma Multiforme Prognosis Prediction
Tool using Random Forest Model [1.1024591739346292]
治療後1年間のGBM患者の健康状態を推定する予測モデルを提案する。
総計467名のGBM患者の臨床像を13の特徴と2つの経過日で比較検討した。
GBM患者生存の予後因子のトップ3はMGMT遺伝子プロモーター,切除範囲,年齢であった。
論文 参考訳(メタデータ) (2021-08-30T07:56:34Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
ポリソムノグラムで睡眠イベントを共同検出する,単一のディープニューラルネットワークアーキテクチャを設計した。
モデルの性能は,F1,精度,リコールスコア,および指標値と臨床値との相関で定量化した。
論文 参考訳(メタデータ) (2021-01-07T13:08:44Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
術後に重篤な症状を発症するかどうかを判定するための共同分類法と回帰法を提案する。
提案手法は,各試料の重量を考慮し,外乱の影響を低減し,不均衡な分類の問題を検討する。
提案手法では, 重症症例の予測精度76.97%, 相関係数0.524, 変換時間0.55日差が得られた。
論文 参考訳(メタデータ) (2020-05-07T12:16:37Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
MODS患者は死亡リスクが高く予後不良である。
本研究は,MODS高齢者の早期死亡予測のための解釈可能・一般化可能なモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2020-01-28T17:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。