論文の概要: The Stochastic Occupation Kernel Method for System Identification
- arxiv url: http://arxiv.org/abs/2406.15661v1
- Date: Fri, 21 Jun 2024 21:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 21:14:22.379458
- Title: The Stochastic Occupation Kernel Method for System Identification
- Title(参考訳): システム同定のための確率的職業カーネル法
- Authors: Michael Wells, Kamel Lahouel, Bruno Jedynak,
- Abstract要約: プロセスのスナップショットが与えられた微分方程式のドリフトと拡散を学習するための2段階の手法を提案する。
最初のステップでは、プロセスの期待値に占有カーネルアルゴリズムを適用することにより、ドリフトを学習する。
第2ステップでは,半定値プログラムを用いてドリフトの拡散を学習する。
- 参考スコア(独自算出の注目度): 0.786519149320184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The method of occupation kernels has been used to learn ordinary differential equations from data in a non-parametric way. We propose a two-step method for learning the drift and diffusion of a stochastic differential equation given snapshots of the process. In the first step, we learn the drift by applying the occupation kernel algorithm to the expected value of the process. In the second step, we learn the diffusion given the drift using a semi-definite program. Specifically, we learn the diffusion squared as a non-negative function in a RKHS associated with the square of a kernel. We present examples and simulations.
- Abstract(参考訳): 占有カーネルの方法は、非パラメトリックな方法でデータから通常の微分方程式を学習するために使われてきた。
本稿では,その過程のスナップショットに与えられた確率微分方程式のドリフトと拡散を学習するための2段階の手法を提案する。
最初のステップでは、プロセスの期待値に占有カーネルアルゴリズムを適用することにより、ドリフトを学習する。
第2ステップでは,半定値プログラムを用いてドリフトの拡散を学習する。
具体的には、核の平方に付随するRKHSにおいて、非負関数として二乗された拡散を学習する。
実例とシミュレーションについて述べる。
関連論文リスト
- Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
我々はガウス過程の適用性を高める技術を開発した。
この観点から構築した効率的な近似を幅広く導入する。
非ユークリッド空間上のガウス過程モデルの集合を開発する。
論文 参考訳(メタデータ) (2022-02-22T01:42:57Z) - Temporal Difference Learning with Continuous Time and State in the
Stochastic Setting [0.0]
継続的政策評価の問題点を考察する。
これは、制御されていない連続時間ダイナミクスと報酬関数に関連付けられた値関数を観察を通して学習する。
論文 参考訳(メタデータ) (2022-02-16T10:10:53Z) - A Kernel Learning Method for Backward SDE Filter [1.7035011973665108]
我々は,その部分雑音観測に基づいて動的システムの状態を伝播するカーネル学習逆SDEフィルタ法を開発した。
本研究では,目標状態の条件付き確率密度関数に対する連続的大域的近似を学習するためのカーネル学習手法を提案する。
数値実験により、カーネル学習の後方SDEは極めて効率的かつ効率的であることが示されている。
論文 参考訳(メタデータ) (2022-01-25T19:49:19Z) - Large-Scale Wasserstein Gradient Flows [84.73670288608025]
ワッサーシュタイン勾配流を近似するスケーラブルなスキームを導入する。
我々のアプローチは、JKOステップを識別するために、入力ニューラルネットワーク(ICNN)に依存しています。
その結果、勾配拡散の各ステップで測定値からサンプリングし、その密度を計算することができる。
論文 参考訳(メタデータ) (2021-06-01T19:21:48Z) - Learning interaction kernels in mean-field equations of 1st-order
systems of interacting particles [1.776746672434207]
相互作用粒子の1次系に対する平均場方程式の相互作用核を学習するための非パラメトリックアルゴリズムを提案する。
少なくとも正則化と二乗することにより、アルゴリズムはデータ適応仮説空間上でカーネルを効率的に学習する。
論文 参考訳(メタデータ) (2020-10-29T15:37:17Z) - A Mean-Field Theory for Learning the Sch\"{o}nberg Measure of Radial
Basis Functions [13.503048325896174]
トレーニングサンプルから放射基底関数のシュンベルク積分表現の分布を学習する。
スケーリング限界において、ランゲヴィン粒子の経験的測度が、反射的イオ拡散ドリフト過程の法則に収束することを証明する。
論文 参考訳(メタデータ) (2020-06-23T21:04:48Z) - Nonparametric Bayesian volatility learning under microstructure noise [2.812395851874055]
市場マイクロ構造騒音下でのボラティリティ学習の課題について検討する。
具体的には、微分方程式からノイズの多い離散時間観測を考察する。
方程式の拡散係数を学習するための新しい計算法を開発した。
論文 参考訳(メタデータ) (2018-05-15T07:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。