論文の概要: A Kernel Learning Method for Backward SDE Filter
- arxiv url: http://arxiv.org/abs/2201.10600v1
- Date: Tue, 25 Jan 2022 19:49:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-28 00:14:36.917167
- Title: A Kernel Learning Method for Backward SDE Filter
- Title(参考訳): 後方SDEフィルタのカーネル学習法
- Authors: Richard Archibald, Feng Bao
- Abstract要約: 我々は,その部分雑音観測に基づいて動的システムの状態を伝播するカーネル学習逆SDEフィルタ法を開発した。
本研究では,目標状態の条件付き確率密度関数に対する連続的大域的近似を学習するためのカーネル学習手法を提案する。
数値実験により、カーネル学習の後方SDEは極めて効率的かつ効率的であることが示されている。
- 参考スコア(独自算出の注目度): 1.7035011973665108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we develop a kernel learning backward SDE filter method to
estimate the state of a stochastic dynamical system based on its partial noisy
observations. A system of forward backward stochastic differential equations is
used to propagate the state of the target dynamical model, and Bayesian
inference is applied to incorporate the observational information. To
characterize the dynamical model in the entire state space, we introduce a
kernel learning method to learn a continuous global approximation for the
conditional probability density function of the target state by using discrete
approximated density values as training data. Numerical experiments demonstrate
that the kernel learning backward SDE is highly effective and highly efficient.
- Abstract(参考訳): 本稿では,その部分雑音観測に基づいて確率的力学系の状態を推定するカーネル学習逆SDEフィルタ法を提案する。
対象力学モデルの状態を伝播するために前方後方確率微分方程式の系を用い、観測情報を組み込むためにベイズ推論を適用する。
状態空間全体の力学モデルを特徴付けるために、離散近似密度値をトレーニングデータとして利用して、目標状態の条件付き確率密度関数に対する連続的大域的近似を学習するカーネル学習法を導入する。
数値実験により、カーネル学習の後方SDEは極めて効率的かつ効率的であることが示されている。
関連論文リスト
- A Training-Free Conditional Diffusion Model for Learning Stochastic Dynamical Systems [10.820654486318336]
本研究では,未知の微分方程式(SDE)をデータを用いて学習するための学習自由条件拡散モデルを提案する。
提案手法はSDEのモデリングにおける計算効率と精度の重要な課題に対処する。
学習されたモデルは、未知のシステムの短期的および長期的両方の挙動を予測する上で、大幅な改善を示す。
論文 参考訳(メタデータ) (2024-10-04T03:07:36Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Rigorous dynamical mean field theory for stochastic gradient descent
methods [17.90683687731009]
一階勾配法の一家系の正確な高次元に対する閉形式方程式を証明した。
これには勾配降下(SGD)やネステロフ加速度などの広く使われているアルゴリズムが含まれる。
論文 参考訳(メタデータ) (2022-10-12T21:10:55Z) - ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
Normalizing Flows [29.310742141970394]
我々は,世界規模で安定な非線形力学を学習できる新しいDeep生成モデルであるImitationFlowを紹介した。
提案手法の有効性を,標準データセットと実ロボット実験の両方で示す。
論文 参考訳(メタデータ) (2020-10-25T14:49:46Z) - Identifying Latent Stochastic Differential Equations [29.103393300261587]
本研究では,高次元時系列データから潜時微分方程式(SDE)を学習する手法を提案する。
提案手法は,自己教師付き学習手法を用いて,環境空間から潜時空間へのマッピングと,基礎となるSDE係数を学習する。
提案手法の検証には,SDEの基盤となる複数のビデオ処理タスク,および実世界のデータセットを用いて行う。
論文 参考訳(メタデータ) (2020-07-12T19:46:31Z) - A Mean-Field Theory for Learning the Sch\"{o}nberg Measure of Radial
Basis Functions [13.503048325896174]
トレーニングサンプルから放射基底関数のシュンベルク積分表現の分布を学習する。
スケーリング限界において、ランゲヴィン粒子の経験的測度が、反射的イオ拡散ドリフト過程の法則に収束することを証明する。
論文 参考訳(メタデータ) (2020-06-23T21:04:48Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。