論文の概要: Porosity and topological properties of triply periodic minimal surfaces
- arxiv url: http://arxiv.org/abs/2406.16215v2
- Date: Wed, 26 Jun 2024 18:39:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 18:37:21.564991
- Title: Porosity and topological properties of triply periodic minimal surfaces
- Title(参考訳): 三周期極小曲面のポロシティと位相的性質
- Authors: Sergei Ermolenko, Pavel Snopov,
- Abstract要約: 3つの周期的最小面 (TPMS) は、その構造的効率と制御可能な幾何学のために大きな関心を集めている。
本稿では, ポロシティとエントロピーとTPMSの形状因子との関係について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Triple periodic minimal surfaces (TPMS) have garnered significant interest due to their structural efficiency and controllable geometry, making them suitable for a wide range of applications. This paper investigates the relationships between porosity and persistence entropy with the shape factor of TPMS. We propose conjectures suggesting that these relationships are polynomial in nature, derived through the application of machine learning techniques. This study exemplifies the integration of machine learning methodologies in pure mathematical research. Besides the conjectures, we provide the mathematical models that might have the potential implications for the design and modeling of TPMS structures in various practical applications.
- Abstract(参考訳): 3つの周期的最小面 (TPMS) は、その構造的効率と制御可能な幾何学のために大きな関心を集めており、幅広い用途に適している。
本稿では,ポロシティと持続エントロピーの関係とTPMSの形状因子について検討する。
本稿では,これらの関係性は,機械学習技術の応用から導かれる,自然界の多項式であることを示す。
本研究は,純粋数学的研究における機械学習手法の統合を実証するものである。
予想の他に, TPMS構造の設計とモデル化に潜在的に影響を及ぼす可能性のある数学的モデルも, 様々な応用で提供する。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
生成モデルは3次元幾何学システムの生成において大きな可能性を示してきた。
既存のアプローチは静的構造のみで動作し、物理系は常に自然界において動的であるという事実を無視する。
本研究では3次元軌跡の時間分布をモデル化する最初の拡散モデルである幾何軌道拡散モデル(GeoTDM)を提案する。
論文 参考訳(メタデータ) (2024-10-16T20:36:41Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
本研究は、複雑な物理系を管理する時間領域偏微分方程式(PDE)の数値解析を高速化するための新しいアプローチを導入する。
この手法は、古典的低次モデリング(ROM)フレームワークと最近のパラメトリックグラフニューラルネットワーク(GNN)の組み合わせに基づいている。
論文 参考訳(メタデータ) (2024-06-03T08:51:25Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
幾何戦略の有効性をベンチマークできるGeom3Dというプラットフォームを提案する。
Geom3Dは16の高度な対称性インフォームド幾何表現モデルと46の多様なデータセット上の14の幾何事前学習方法を含んでいる。
論文 参考訳(メタデータ) (2023-06-15T05:37:25Z) - Deep learning for the rare-event rational design of 3D printed
multi-material mechanical metamaterials [0.0]
マルチマテリアル3Dプリンティング技術は、メタマテリアルの合理的設計の道を開いた。
ネットワークの結果として生じる異方性力学特性と,特に稀な設計について検討する。
ディープラーニングに基づくアルゴリズムは、異なる設計の機械的特性を正確に予測することができる。
論文 参考訳(メタデータ) (2022-04-04T18:04:23Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - GeoT: A Geometry-aware Transformer for Reliable Molecular Property
Prediction and Chemically Interpretable Representation Learning [16.484048833163282]
GeoT(Geometry-aware Transformer)という,分子表現学習のためのトランスフォーマーベースの新しいフレームワークを提案する。
GeoTは、分子特性予測と同様に、信頼性の高い解釈性を提供するように設計された注意に基づくメカニズムを通じて、分子グラフ構造を学習する。
実験的なシミュレーションを含む包括的実験により、GeoTは分子構造に関する化学的な洞察を効果的に学習し、人工知能と分子科学のギャップを埋めることを明らかにした。
論文 参考訳(メタデータ) (2021-06-29T15:47:18Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。