論文の概要: Cherry on the Cake: Fairness is NOT an Optimization Problem
- arxiv url: http://arxiv.org/abs/2406.16606v1
- Date: Mon, 24 Jun 2024 12:46:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 14:44:42.832355
- Title: Cherry on the Cake: Fairness is NOT an Optimization Problem
- Title(参考訳): Cherry on the Cake:フェアネスは最適化の問題ではない
- Authors: Marco Favier, Toon Calders,
- Abstract要約: 効率的なケーキカットは最適決定関数と等価であることを示す。
この接続が機械学習問題における公平性にどのように活用できるかを示す。
- 参考スコア(独自算出の注目度): 3.706222947143855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fair cake-cutting is a mathematical subfield that studies the problem of fairly dividing a resource among a number of participants. The so-called ``cake,'' as an object, represents any resource that can be distributed among players. This concept is connected to supervised multi-label classification: any dataset can be thought of as a cake that needs to be distributed, where each label is a player that receives its share of the dataset. In particular, any efficient cake-cutting solution for the dataset is equivalent to an optimal decision function. Although we are not the first to demonstrate this connection, the important ramifications of this parallel seem to have been partially forgotten. We revisit these classical results and demonstrate how this connection can be prolifically used for fairness in machine learning problems. Understanding the set of achievable fair decisions is a fundamental step in finding optimal fair solutions and satisfying fairness requirements. By employing the tools of cake-cutting theory, we have been able to describe the behavior of optimal fair decisions, which, counterintuitively, often exhibit quite unfair properties. Specifically, in order to satisfy fairness constraints, it is sometimes preferable, in the name of optimality, to purposefully make mistakes and deny giving the positive label to deserving individuals in a community in favor of less worthy individuals within the same community. This practice is known in the literature as cherry-picking and has been described as ``blatantly unfair.''
- Abstract(参考訳): フェアケーキカット(英: Fair cake-cutting)は、多くの参加者の間でリソースを公平に分割する問題を研究する数学的サブフィールドである。
いわゆる ‘cake' はオブジェクトとして,プレーヤ間で分散可能なリソースを表しています。
この概念は、教師付きマルチラベル分類に関連付けられている。任意のデータセットは、分散する必要があるケーキとみなすことができ、各ラベルはデータセットの共有を受け取るプレーヤである。
特に、データセットの効率的なケーキカットソリューションは、最適な決定関数と等価である。
我々はこの関係を最初に示したわけではないが、この並列性の重要な影響は部分的に忘れられたように思われる。
我々はこれらの古典的な結果を再考し、この接続が機械学習問題における公平性にどのように活用できるかを実証する。
達成可能な公正な決定の集合を理解することは、最適な公正な解を見つけ、公正な要求を満たすための基本的なステップである。
ケーキカット理論のツールを利用することで、最適な公正決定の振る舞いを記述することができました。
具体的には、公正性の制約を満たすために、最適性という名目で、故意に誤りを犯し、同じコミュニティ内の価値の低い個人を優先して、コミュニティ内の個人を保護するための肯定的なラベルを与えることを拒否することが望ましい。
この習慣は、文学ではチェリーピッキングとして知られており、「無礼に不公平」と表現されている。
「」
関連論文リスト
- Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Enforcing Group Fairness in Algorithmic Decision Making: Utility
Maximization Under Sufficiency [0.0]
本稿では,PPVパリティ,偽脱落率(FOR)パリティ(False Omission rate)パリティ(FOR)パリティ(False Omission rate)パリティ(FOR)パリティ(False Omission rate)パリティ(FOR)パリティ(FOR)パリティ(Sufficiency)について述べる。
グループ固有のしきい値規則はPPVパリティとForパリティに最適であることを示す。
また,フェアネス制約を満たす最適決定規則の解も提供する。
論文 参考訳(メタデータ) (2022-06-05T18:47:34Z) - Counterfactual Fairness with Partially Known Causal Graph [85.15766086381352]
本稿では,真の因果グラフが不明な場合に,対実フェアネスの概念を実現するための一般的な手法を提案する。
特定の背景知識が提供されると、正の因果グラフが完全に知られているかのように、反ファクト的公正性を達成することができる。
論文 参考訳(メタデータ) (2022-05-27T13:40:50Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Everything is Relative: Understanding Fairness with Optimal Transport [1.160208922584163]
バイアスとその構造を解釈可能かつ定量に探索できる公平性への最適輸送ベースアプローチを提案する。
我々のフレームワークは、アルゴリズムによる差別のよく知られた例を復元し、他の指標が失敗したときの不公平さを検知し、レコメンデーションの機会を探ることができる。
論文 参考訳(メタデータ) (2021-02-20T13:57:53Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Fairness Constraints in Semi-supervised Learning [56.48626493765908]
我々は,最適化問題として定式化された,公平な半教師付き学習のためのフレームワークを開発する。
偏り・分散・雑音分解による半教師あり学習における識別源を理論的に分析する。
本手法は, 公平な半教師付き学習を達成でき, 公正な教師付き学習よりも精度と公平性のトレードオフが良好である。
論文 参考訳(メタデータ) (2020-09-14T04:25:59Z) - Addressing Fairness in Classification with a Model-Agnostic
Multi-Objective Algorithm [33.145522561104464]
分類における公平性の目標は、人種や性別などのセンシティブな属性に基づいて個人のグループを識別しない分類器を学習することである。
公正アルゴリズムを設計する1つのアプローチは、公正の概念の緩和を正規化項として使うことである。
我々はこの性質を利用して、既存の緩和よりも証明可能な公正の概念を近似する微分可能な緩和を定義する。
論文 参考訳(メタデータ) (2020-09-09T17:40:24Z) - Learning Individually Fair Classifier with Path-Specific Causal-Effect
Constraint [31.86959207229775]
本稿では,個々に公平な分類器を学習するための枠組みを提案する。
個人不公平(PIU)の確率を定義し、データから推定できるPIUの上界がゼロに近いように制御される最適化問題を解く。
実験結果から,本手法は精度のわずかなコストで,個別に公平な分類器を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-02-17T02:46:17Z) - Recovering from Biased Data: Can Fairness Constraints Improve Accuracy? [11.435833538081557]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、バイアスがあるだけでなく、真のデータ分布に最適な精度を持つ分類器を生成する。
公平性に制約されたERMによるこの問題の是正能力について検討する。
また、トレーニングデータの再重み付け、等化オッド、復号化パリティなど、他のリカバリ手法についても検討する。
論文 参考訳(メタデータ) (2019-12-02T22:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。