Distance Recomputator and Topology Reconstructor for Graph Neural Networks
- URL: http://arxiv.org/abs/2406.17281v1
- Date: Tue, 25 Jun 2024 05:12:51 GMT
- Title: Distance Recomputator and Topology Reconstructor for Graph Neural Networks
- Authors: Dong Liu, Meng Jiang,
- Abstract summary: We introduce Distance Recomputator and Topology Reconstructor methodologies, aimed at enhancing Graph Neural Networks (GNNs)
The Distance Recomputator dynamically recalibrates node distances using a dynamic encoding scheme, thereby improving the accuracy and adaptability of node representations.
The Topology Reconstructor adjusts local graph structures based on computed "similarity distances," optimizing network configurations for improved learning outcomes.
- Score: 22.210886585639063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces novel methodologies, the Distance Recomputator and Topology Reconstructor, aimed at enhancing Graph Neural Networks (GNNs). The Distance Recomputator dynamically recalibrates node distances within k-hop neighborhoods using a dynamic encoding scheme, thereby improving the accuracy and adaptability of node representations. Concurrently, the Topology Reconstructor adjusts local graph structures based on computed "similarity distances," optimizing network configurations for improved learning outcomes. These methods address the limitations of static node representations and fixed aggregation schemes in traditional GNNs, offering a more nuanced approach to modeling complex and dynamic graph topologies. Furthermore, our experimental evaluations demonstrate significant performance advantages over existing methods across various benchmark datasets. The proposed Distance Recomputator and Topology Reconstructor not only enhance node relationship modeling accuracy but also optimize information aggregation efficiency through an asynchronous aggregation mechanism. This approach proves particularly effective in scenarios involving dynamic or large-scale graphs, showcasing the methods' robustness and applicability in real-world graph learning tasks.
Related papers
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - Sparse Decomposition of Graph Neural Networks [20.768412002413843]
We propose an approach to reduce the number of nodes that are included during aggregation.
We achieve this through a sparse decomposition, learning to approximate node representations using a weighted sum of linearly transformed features.
We demonstrate via extensive experiments that our method outperforms other baselines designed for inference speedup.
arXiv Detail & Related papers (2024-10-25T17:52:16Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
arXiv Detail & Related papers (2022-01-27T20:23:24Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - SCG-Net: Self-Constructing Graph Neural Networks for Semantic
Segmentation [23.623276007011373]
We propose a module that learns a long-range dependency graph directly from the image and uses it to propagate contextual information efficiently.
The module is optimised via a novel adaptive diagonal enhancement method and a variational lower bound.
When incorporated into a neural network (SCG-Net), semantic segmentation is performed in an end-to-end manner and competitive performance.
arXiv Detail & Related papers (2020-09-03T12:13:09Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.