論文の概要: Learning Optimal Filters Using Variational Inference
- arxiv url: http://arxiv.org/abs/2406.18066v3
- Date: Sat, 22 Mar 2025 23:54:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:28:45.277008
- Title: Learning Optimal Filters Using Variational Inference
- Title(参考訳): 変分推論を用いた最適フィルタの学習
- Authors: Eviatar Bach, Ricardo Baptista, Enoch Luk, Andrew Stuart,
- Abstract要約: フィルタリングシステムのためのパラメータ化分析マップを学習するためのフレームワークを提案する。
原理的には、これはフィルタリング分布の近似をより良くし、従ってバイアスを小さくする。
この手法は、線形および非線形力学系をフィルタリングするアフィン解析マップにおいてゲイン行列の学習に利用できることを示す。
- 参考スコア(独自算出の注目度): 0.3749861135832072
- License:
- Abstract: Filtering - the task of estimating the conditional distribution for states of a dynamical system given partial and noisy observations - is important in many areas of science and engineering, including weather and climate prediction. However, the filtering distribution is generally intractable to obtain for high-dimensional, nonlinear systems. Filters used in practice, such as the ensemble Kalman filter (EnKF), provide biased probabilistic estimates for nonlinear systems and have numerous tuning parameters. Here, we present a framework for learning a parameterized analysis map - the transformation that takes samples from a forecast distribution, and combines with an observation, to update the approximate filtering distribution - using variational inference. In principle this can lead to a better approximation of the filtering distribution, and hence smaller bias. We show that this methodology can be used to learn the gain matrix, in an affine analysis map, for filtering linear and nonlinear dynamical systems; we also study the learning of inflation and localization parameters for an EnKF. The framework developed here can also be used to learn new filtering algorithms with more general forms for the analysis map.
- Abstract(参考訳): フィルタリング – 部分的およびノイズの多い観測を行う力学系の状態の条件分布を推定するタスク – は、気象や気候予報など、科学や工学の多くの分野において重要である。
しかし、フィルタ分布は一般に高次元非線形系において得ることができる。
アンサンブルカルマンフィルタ(EnKF)のような実際に用いられるフィルタは非線形系に対するバイアス付き確率推定を提供し、多くのチューニングパラメータを持つ。
本稿では,パラメータ化解析マップ(予測分布からサンプルを抽出し,観測値と組み合わせた変換)を学習し,近似フィルタリング分布を変動推論を用いて更新するフレームワークを提案する。
原理的には、これはフィルタリング分布の近似をより良くし、従ってバイアスを小さくする。
本手法は, 線形および非線形力学系をフィルタリングするアフィン解析マップにおいて, ゲイン行列の学習に利用できることを示すとともに, EnKFのインフレーションおよび局所化パラメータの学習についても検討する。
ここで開発されたフレームワークは、分析マップのより一般的な形式を持つ新しいフィルタリングアルゴリズムの学習にも使用することができる。
関連論文リスト
- Preserving linear invariants in ensemble filtering methods [0.0]
非ガウスフィルタ問題の線形不変量を自動的に保存する非線形アンサンブルフィルタの一般クラスを導入する。
アンサンブルカルマンフィルタの既存の正規化手法と線形不変量の保存法を組み合わせる方法について述べる。
論文 参考訳(メタデータ) (2024-04-22T16:39:32Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
我々は密度近似と計算効率の面でいくつかの利点を提供するガウスPSDモデルに基づく新しいフィルタのクラスを提案する。
本研究では,遷移や観測がガウスPSDモデルである場合,フィルタリングを効率的にクローズド形式で行うことができることを示す。
提案する推定器は, 近似の精度に依存し, 遷移確率の正則性に適応する推定誤差を伴って, 高い理論的保証を享受する。
論文 参考訳(メタデータ) (2024-02-15T08:51:49Z) - Learning Differentiable Particle Filter on the Fly [18.466658684464598]
微分可能な粒子フィルタは、シーケンシャルベイズ推論技術の新たなクラスである。
本稿では,データ到着時にモデルパラメータを更新できるように,微分可能な粒子フィルタのためのオンライン学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-10T17:54:40Z) - Nonlinear Filtering with Brenier Optimal Transport Maps [4.745059103971596]
本稿では,非線形フィルタリング,すなわち動的システムの状態の条件分布の計算の問題について述べる。
従来の逐次重要再サンプリング(SIR)粒子フィルタは、縮退確率や高次元状態を含むシナリオにおいて、基本的な制限に悩まされる。
本稿では,Brenier 最適輸送 (OT) マップを,現在の状態の分布から次のステップにおける後部分布へ推定する手法について検討する。
論文 参考訳(メタデータ) (2023-10-21T01:34:30Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
本研究では,Doobの$h$-transformsを近似する計算フレームワークを提案する。
提案手法は、最先端粒子フィルタよりも桁違いに効率的である。
論文 参考訳(メタデータ) (2022-06-07T15:03:05Z) - Deep Learning for the Benes Filter [91.3755431537592]
本研究では,メッシュのないニューラルネットワークによるベンズモデルの解の密度の表現に基づく新しい数値計算法を提案する。
ニューラルネットワークの領域選択におけるフィルタリングモデル方程式における非線形性の役割について論じる。
論文 参考訳(メタデータ) (2022-03-09T14:08:38Z) - Machine learning-based conditional mean filter: a generalization of the
ensemble Kalman filter for nonlinear data assimilation [42.60602838972598]
スパース観測に基づく非線形ダイナミクスを持つ高次元非ガウス状態モデルを追跡する機械学習ベースのアンサンブル条件付き平均フィルタ(ML-EnCMF)を提案する。
提案手法は条件付き期待値に基づいて開発され,機械学習(ML)技術とアンサンブル法を組み合わせて数値的に実装されている。
論文 参考訳(メタデータ) (2021-06-15T06:40:32Z) - When is Particle Filtering Efficient for Planning in Partially Observed
Linear Dynamical Systems? [60.703816720093016]
本稿では, 逐次計画における粒子フィルタリングの効率性について検討する。
我々は、粒子フィルタリングに基づくポリシーの長期報酬が正確な推測に基づいてそれに近いように、必要な粒子の数に縛り付けることができる。
このテクニックは、他のシーケンシャルな意思決定問題に有効であると考えています。
論文 参考訳(メタデータ) (2020-06-10T17:43:43Z) - Dependency Aware Filter Pruning [74.69495455411987]
重要でないフィルタを割ることは、推論コストを軽減するための効率的な方法である。
以前の作業は、その重み基準やそれに対応するバッチノームスケーリング要因に従ってフィルタをプルークする。
所望の空間性を達成するために,空間性誘導正規化を動的に制御する機構を提案する。
論文 参考訳(メタデータ) (2020-05-06T07:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。