論文の概要: Optimal Low-Depth Quantum Signal-Processing Phase Estimation
- arxiv url: http://arxiv.org/abs/2407.01583v1
- Date: Mon, 17 Jun 2024 10:33:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-07 13:24:39.578661
- Title: Optimal Low-Depth Quantum Signal-Processing Phase Estimation
- Title(参考訳): 低深度量子信号の最適位相推定
- Authors: Yulong Dong, Jonathan A. Gross, Murphy Yuezhen Niu,
- Abstract要約: 本稿では,課題に対して頑健な量子信号生成位相推定アルゴリズムを導入し,最適性能を実現する。
超伝導2量子ビット実験において不要なスワップ角度を推定するために, 従来の標準偏差精度は10~4ドルであった。
我々の結果は量子フィッシャー情報に対して厳密に検証され、2量子ゲート学習の未整合精度を達成するためのプロトコルの能力を確認する。
- 参考スコア(独自算出の注目度): 0.029541734875307393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum effects like entanglement and coherent amplification can be used to drastically enhance the accuracy of quantum parameter estimation beyond classical limits. However, challenges such as decoherence and time-dependent errors hinder Heisenberg-limited amplification. We introduce Quantum Signal-Processing Phase Estimation algorithms that are robust against these challenges and achieve optimal performance as dictated by the Cram\'{e}r-Rao bound. These algorithms use quantum signal transformation to decouple interdependent phase parameters into largely orthogonal ones, ensuring that time-dependent errors in one do not compromise the accuracy of learning the other. Combining provably optimal classical estimation with near-optimal quantum circuit design, our approach achieves an unprecedented standard deviation accuracy of $10^{-4}$ radians for estimating unwanted swap angles in superconducting two-qubit experiments, using low-depth ($<10$) circuits. This represents up to two orders of magnitude improvement over existing methods. Theoretically and numerically, we demonstrate the optimality of our algorithm against time-dependent phase errors, observing that the variance of the time-sensitive parameter $\varphi$ scales faster than the asymptotic Heisenberg scaling in the small-depth regime. Our results are rigorously validated against the quantum Fisher information, confirming our protocol's ability to achieve unmatched precision for two-qubit gate learning.
- Abstract(参考訳): 絡み合いやコヒーレント増幅のような量子効果は、古典的な限界を超えた量子パラメータ推定の精度を大幅に向上させるのに使うことができる。
しかし、デコヒーレンスや時間依存誤差といった課題はハイゼンベルクの増幅を妨げている。
本稿では,これらの課題に対して頑健であり,Cram\'{e}r-Rao境界によって予測される最適性能を実現する量子信号生成位相推定アルゴリズムを提案する。
これらのアルゴリズムは、相互依存型位相パラメータをほぼ直交型に分離するために量子信号変換を使用し、一方の時間依存誤差が他方の学習精度を損なわないことを保証している。
実証可能な古典的推定と準最適量子回路設計を組み合わせることで、超伝導2量子ビット実験において、低深さ(10ドル)の回路を用いて不要なスワップ角を推定するために、前例のない標準偏差精度10^{-4}$ラジアンを達成できる。
これは、既存の方法よりも最大で2桁改善されている。
理論的,数値的には,時間依存型位相誤差に対するアルゴリズムの最適性を示し,時間依存型パラメータ$\varphi$の分散が,低深さ系における漸近的ハイゼンベルクスケーリングよりも高速にスケールすることを示した。
我々の結果は量子フィッシャー情報に対して厳密に検証され、2量子ゲート学習の未整合精度を達成するためのプロトコルの能力を確認する。
関連論文リスト
- Long distance spin shuttling enabled by few-parameter velocity optimization [37.69303106863453]
Si/SiGeにおける移動コンベヤモード量子ドットによるスピン量子ビットのシャットリングは、スケーラブルな量子コンピューティングへの有望な経路を提供する。
近年のバレー自由度と良質な障害によるデファスティングのモデル化では、減速速度が決定され、修正しきい値以上の誤差が制限される。
一定の速度での10$mu$mシャットリングの典型的な誤差は、O(1)エラーとなり、高速で自動微分可能な数値を用いて、障害モデリングや潜在的なノイズ範囲の改善を含むことを示す。
論文 参考訳(メタデータ) (2024-09-11T20:21:45Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
我々はこのプロトコルをバイアス場デジタルダイアバティック量子最適化(BF-DCQO)と呼ぶ。
私たちの純粋に量子的なアプローチは、古典的な変分量子アルゴリズムへの依存を排除します。
基底状態の成功確率のスケーリング改善を実現し、最大2桁まで増大する。
論文 参考訳(メタデータ) (2024-05-22T18:11:42Z) - Statistical phase estimation and error mitigation on a superconducting
quantum processor [2.624902795082451]
リゲッティの超伝導プロセッサの統計的位相推定を実践する。
ゼロノイズ外挿やビットフリップ平均化による読み出し誤差緩和を含む誤り軽減戦略を取り入れた。
我々の研究は、統計的位相推定が、特にコヒーレントな誤差を緩和した後、自然にノイズに耐性があることを実証している。
論文 参考訳(メタデータ) (2023-04-11T10:40:22Z) - Real-time adaptive estimation of decoherence timescales for a single
qubit [2.6938732235832044]
量子コヒーレンスが存続する時間を特徴付けることは、量子ビット、記憶、センサーの実装に不可欠である。
簡単な解析的更新規則に基づく適応型多パラメータ手法を提案し,鍵デコヒーレンスをリアルタイムで推定する。
因子 $sim 2$ のさらなるスピードアップは、分散に対して感度に関して最適化を行うことによって実現できる。
論文 参考訳(メタデータ) (2022-10-12T11:28:23Z) - Beyond Heisenberg Limit Quantum Metrology through Quantum Signal
Processing [0.0]
本稿では,量子力学における雑音による制限を克服する量子信号処理フレームワークを提案する。
我々のアルゴリズムは超伝導量子ビット実験で$theta$を学習するために標準偏差で10-4$の精度を達成している。
我々の研究は、実験室の量子コンピュータに実用的な応用を実証する最初の量子信号処理アルゴリズムである。
論文 参考訳(メタデータ) (2022-09-22T17:47:21Z) - Fast Quantum Calibration using Bayesian Optimization with State
Parameter Estimator for Non-Markovian Environment [11.710177724383954]
弱測定とベイズ最適化を利用してゲート設計のための最適制御パルスを求める,量子状態のリアルタイム最適推定器を提案する。
以上の結果から,キャリブレーション過程が著しく低下し,高いゲート忠実度が得られた。
論文 参考訳(メタデータ) (2022-05-25T17:31:15Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
証明可能な性能保証を伴う忠実度推定のための新しい,効率的な量子アルゴリズムを開発した。
我々のアルゴリズムは量子特異値変換のような高度な量子線型代数技術を用いる。
任意の非自明な定数加算精度に対する忠実度推定は一般に困難であることを示す。
論文 参考訳(メタデータ) (2022-03-30T02:02:16Z) - Dual-Frequency Quantum Phase Estimation Mitigates the Spectral Leakage
of Quantum Algorithms [76.15799379604898]
量子位相推定は、レコード長の逆数が未知の位相の整数倍でない場合にスペクトルリークに悩まされる。
複数のサンプルが利用できるとき,クレーマー・ラオ境界に近づいた二重周波数推定器を提案する。
論文 参考訳(メタデータ) (2022-01-23T17:20:34Z) - Multistate Transition Dynamics by Strong Time-Dependent Perturbation in
NISQ era [0.0]
我々は,McLachlan変分原理をハイブリッド量子古典アルゴリズムに応用した量子計算手法を開発した。
ベンチマークデータと比較すると、遷移確率は1%以上の精度で得られる。
論文 参考訳(メタデータ) (2021-12-13T00:49:15Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - Bosonic field digitization for quantum computers [62.997667081978825]
我々は、離散化された場振幅ベースで格子ボゾン場の表現に対処する。
本稿では,エラースケーリングを予測し,効率的な量子ビット実装戦略を提案する。
論文 参考訳(メタデータ) (2021-08-24T15:30:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。