論文の概要: Deep learning architectures for data-driven damage detection in nonlinear dynamic systems
- arxiv url: http://arxiv.org/abs/2407.03700v1
- Date: Thu, 4 Jul 2024 07:40:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:52:18.249138
- Title: Deep learning architectures for data-driven damage detection in nonlinear dynamic systems
- Title(参考訳): 非線形力学系におけるデータ駆動損傷検出のためのディープラーニングアーキテクチャ
- Authors: Harrish Joseph, Giuseppe Quaranta, Biagio Carboni, Walter Lacarbonara,
- Abstract要約: 本研究は,非線形力学系におけるデータ駆動型損傷検出に応用した深層学習について詳細に検討する。
1次元畳み込みニューラルネットワークを利用するオートエンコーダ(AE)とジェネレーティブ・敵ネットワーク(GAN)が実装されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The primary goal of structural health monitoring is to detect damage at its onset before it reaches a critical level. The in-depth investigation in the present work addresses deep learning applied to data-driven damage detection in nonlinear dynamic systems. In particular, autoencoders (AEs) and generative adversarial networks (GANs) are implemented leveraging on 1D convolutional neural networks. The onset of damage is detected in the investigated nonlinear dynamic systems by exciting random vibrations of varying intensity, without prior knowledge of the system or the excitation and in unsupervised manner. The comprehensive numerical study is conducted on dynamic systems exhibiting different types of nonlinear behavior. An experimental application related to a magneto-elastic nonlinear system is also presented to corroborate the conclusions.
- Abstract(参考訳): 構造的健康モニタリングの第一の目的は、臨界レベルに達する前に、開始時に損傷を検出することである。
本研究は, 非線形力学系におけるデータ駆動型損傷検出に応用した深層学習について検討した。
特に,1次元畳み込みニューラルネットワークを利用したオートエンコーダ(AE)とGAN(Generative Adversarial Network)が実装されている。
測定された非線形力学系における損傷の開始は, システムや励起の事前知識や教師なしの方法で, 様々な強度の励起ランダム振動によって検出される。
非線形挙動の異なる力学系について包括的数値解析を行った。
磁気弾性非線形系に関する実験的応用も示し、結論を裏付ける。
関連論文リスト
- Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - On instabilities in neural network-based physics simulators [0.0]
ニューラルネットワークによって生じる長時間の力学は、しばしば非物理的または不安定である。
トレーニング力学の収束速度は不均一であり, データのエネルギー分布に依存することを示す。
トレーニング中にデータに合成ノイズを注入すると、トレーニングダイナミクスが減衰し、学習したシミュレータを安定させることができる。
論文 参考訳(メタデータ) (2024-06-18T23:25:14Z) - Detecting disturbances in network-coupled dynamical systems with machine
learning [0.0]
ネットワーク内の未知の障害を識別するための機械学習に基づくモデルフリー手法を提案する。
本手法は, 未知の乱れの多種多様な位置と特性を, 既知の強制関数を用いて同定できることが判明した。
論文 参考訳(メタデータ) (2023-07-24T13:19:15Z) - Learning Fine Scale Dynamics from Coarse Observations via Inner
Recurrence [0.0]
最近の研究は、ディープニューラルネットワーク(DNN)による未知のシステムの進化に関するデータ駆動学習に焦点を当てている。
本稿では,このような粗い観測データから微細な力学を学習するための計算手法を提案する。
論文 参考訳(メタデータ) (2022-06-03T20:28:52Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Coupled and Uncoupled Dynamic Mode Decomposition in Multi-Compartmental
Systems with Applications to Epidemiological and Additive Manufacturing
Problems [58.720142291102135]
非線形問題に適用した場合,動的分解(DMD)は強力なツールである可能性が示唆された。
特に,Covid-19に対する連続遅延SIRDモデルに対する興味深い数値的応用を示す。
論文 参考訳(メタデータ) (2021-10-12T21:42:14Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting [11.771843031752269]
本稿では,間接的に観測された動的システムの潜在表現を学習するための汎用的かつスケーラブルな手法を提案する。
生画像から直接観察されたシステム上での最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-06-22T12:30:18Z) - DynNet: Physics-based neural architecture design for linear and
nonlinear structural response modeling and prediction [2.572404739180802]
本研究では,線形および非線形な多自由度系の力学を学習できる物理に基づくリカレントニューラルネットワークモデルを提案する。
このモデルは、変位、速度、加速度、内部力を含む完全な応答のセットを推定することができる。
論文 参考訳(メタデータ) (2020-07-03T17:05:35Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。