論文の概要: RRM: Relightable assets using Radiance guided Material extraction
- arxiv url: http://arxiv.org/abs/2407.06397v1
- Date: Mon, 8 Jul 2024 21:10:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 19:54:43.137453
- Title: RRM: Relightable assets using Radiance guided Material extraction
- Title(参考訳): 放射光誘導材料抽出によるRRMの再生資産化
- Authors: Diego Gomez, Julien Philip, Adrien Kaiser, Élie Michel,
- Abstract要約: 反射率の高い物体が存在する場合であっても,シーンの材料,幾何学,環境照明を抽出できる手法を提案する。
本手法は,物理量に基づくパラメータを通知する放射場表現と,ラプラシアンピラミッドに基づく表現的環境光構造とから構成される。
提案手法は,パラメータ検索タスクにおける現状よりも優れており,高忠実なリライティングと,サーベイシックシーンにおける新しいビュー合成を実現している。
- 参考スコア(独自算出の注目度): 5.175522626712229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing NeRFs under arbitrary lighting has become a seminal problem in the last few years. Recent efforts tackle the problem via the extraction of physically-based parameters that can then be rendered under arbitrary lighting, but they are limited in the range of scenes they can handle, usually mishandling glossy scenes. We propose RRM, a method that can extract the materials, geometry, and environment lighting of a scene even in the presence of highly reflective objects. Our method consists of a physically-aware radiance field representation that informs physically-based parameters, and an expressive environment light structure based on a Laplacian Pyramid. We demonstrate that our contributions outperform the state-of-the-art on parameter retrieval tasks, leading to high-fidelity relighting and novel view synthesis on surfacic scenes.
- Abstract(参考訳): 任意の照明下でのNeRFの合成は、ここ数年で問題となっている。
近年の取り組みは、任意の照明の下でレンダリングできる物理的パラメータを抽出することでこの問題に取り組むが、それらは扱えるシーンの範囲に限られており、通常は光沢のあるシーンを誤って扱う。
反射率の高い物体の存在下でもシーンの材料, 幾何学, 環境照明を抽出できるRCMを提案する。
本手法は,物理量に基づくパラメータを通知する放射場表現と,ラプラシアンピラミッドに基づく表現的環境光構造とから構成される。
提案手法は,パラメータ検索タスクにおける現状よりも優れており,高忠実なリライティングと,サーベイシックシーンにおける新しいビュー合成を実現している。
関連論文リスト
- NieR: Normal-Based Lighting Scene Rendering [17.421326290704844]
NieR(Normal-based Lighting Scene Rendering)は、様々な材料表面における光反射のニュアンスを考慮した新しいフレームワークである。
本稿では,光の反射特性を捉えたLD(Light Decomposition)モジュールについて述べる。
また、スパースガウス表現の限界を克服するためにHNGD (Hierarchical Normal Gradient Densification) モジュールを提案する。
論文 参考訳(メタデータ) (2024-05-21T14:24:43Z) - Neural Relighting with Subsurface Scattering by Learning the Radiance
Transfer Gradient [73.52585139592398]
本稿では,ボリュームレンダリングによる放射移動場学習のための新しいフレームワークを提案する。
我々は、我々のコードと、地下散乱効果を持つ新しい光ステージのオブジェクトデータセットを公開します。
論文 参考訳(メタデータ) (2023-06-15T17:56:04Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - NeAI: A Pre-convoluted Representation for Plug-and-Play Neural Ambient
Illumination [28.433403714053103]
ニューラル環境照明(NeAI)という枠組みを提案する。
NeAIは、物理的な方法で複雑な照明を扱うための照明モデルとしてNeRF(Neural Radiance Fields)を使用している。
実験は、以前の作品と比較して、ノベルビューレンダリングの優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-04-18T06:32:30Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
本稿では,大都市におけるシーン形状,空間変化材料,HDR照明を,任意の深さで描画したRGB画像の集合から共同で再構成できる新しい逆レンダリングフレームワークを提案する。
具体的には、第1の光線を考慮に入れ、第2の光線をモデリングするために、明示的なメッシュ(基礎となるニューラルネットワークから再構成)を用いて、キャストシャドウのような高次照明効果を発生させる。
論文 参考訳(メタデータ) (2023-04-06T17:51:54Z) - Neural Radiance Transfer Fields for Relightable Novel-view Synthesis
with Global Illumination [63.992213016011235]
本稿では,ニューラル計算された放射光伝達関数を学習し,新しい視点下でのシーンリライティング手法を提案する。
本手法は,1つの未知の照明条件下で,シーンの実際の画像に対してのみ監視することができる。
その結果, シーンパラメータのアンタングルの復元は, 現状よりも有意に向上していることがわかった。
論文 参考訳(メタデータ) (2022-07-27T16:07:48Z) - NeILF: Neural Incident Light Field for Physically-based Material
Estimation [31.230609753253713]
本稿では,多視点画像と再構成幾何から物質と照明を推定するための微分可能なレンダリングフレームワークを提案する。
本フレームワークでは,シーン照明をニューラルインシデント光電場(NeILF)と表現し,多層パーセプトロンでモデル化した表面BRDFとして材料特性を示す。
論文 参考訳(メタデータ) (2022-03-14T15:23:04Z) - NeRFactor: Neural Factorization of Shape and Reflectance Under an
Unknown Illumination [60.89737319987051]
照明条件が不明な物体の多視点像から物体の形状と空間的反射率を復元する問題に対処する。
これにより、任意の環境照明下でのオブジェクトの新たなビューのレンダリングや、オブジェクトの材料特性の編集が可能になる。
論文 参考訳(メタデータ) (2021-06-03T16:18:01Z) - PhySG: Inverse Rendering with Spherical Gaussians for Physics-based
Material Editing and Relighting [60.75436852495868]
本稿では、RGB入力画像からジオメトリ、マテリアル、イルミネーションをゼロから再構築する逆レンダリングパイプラインPhySGを紹介します。
我々は合成データと実データの両方を用いて,新しい視点のレンダリングを可能にするだけでなく,物質や照明の物理ベースの外観編集を可能にすることを実証した。
論文 参考訳(メタデータ) (2021-04-01T17:59:02Z) - NeRV: Neural Reflectance and Visibility Fields for Relighting and View
Synthesis [45.71507069571216]
本稿では,無拘束の照明により照らされたシーンの画像を入力として入力する手法を提案する。
これにより、任意の照明条件下で新しい視点からレンダリングできる3D表現を生成します。
論文 参考訳(メタデータ) (2020-12-07T18:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。