論文の概要: Navigating the Data Trading Crossroads: An Interdisciplinary Survey
- arxiv url: http://arxiv.org/abs/2407.11466v1
- Date: Tue, 16 Jul 2024 08:07:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 16:12:18.401054
- Title: Navigating the Data Trading Crossroads: An Interdisciplinary Survey
- Title(参考訳): データトレーディングのクロスロードをナビゲートする - 学際的な調査
- Authors: Yi Yu, Jingru Yu, Xuhong Wang, Juanjuan Li, Yilun Lin, Conghui He, Yanqing Yang, Yu Qiao, Li Li, Fei-Yue Wang,
- Abstract要約: データは、将来の経済にとって重要な要素として、ますます認識されるようになった。
しかし、効率的なデータトレーディング市場の構築は、プライバシー侵害、データ独占、誤用といった問題に直面している。
本稿では,既存の問題と研究ギャップを同定し,潜在的な解決策を提案する。
- 参考スコア(独自算出の注目度): 33.64953318642493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data has been increasingly recognized as a critical factor in the future economy. However, constructing an efficient data trading market faces challenges such as privacy breaches, data monopolies, and misuse. Despite numerous studies proposing algorithms to protect privacy and methods for pricing data, a comprehensive understanding of these issues and systemic solutions remain elusive. This paper provides an extensive review and evaluation of data trading research, aiming to identify existing problems, research gaps, and propose potential solutions. We categorize the challenges into three main areas: Compliance Challenges, Collateral Consequences, and Costly Transactions (the "3C problems"), all stemming from ambiguity in data rights. Through a quantitative analysis of the literature, we observe a paradigm shift from isolated solutions to integrated approaches. Addressing the unresolved issue of right ambiguity, we introduce the novel concept of "data usufruct," which allows individuals to use and benefit from data they do not own. This concept helps reframe data as a more conventional factor of production and aligns it with established economic theories, paving the way for a comprehensive framework of research theories, technical tools, and platforms. We hope this survey provides valuable insights and guidance for researchers, practitioners, and policymakers, thereby contributing to digital economy advancements.
- Abstract(参考訳): データは、将来の経済にとって重要な要素として、ますます認識されるようになった。
しかし、効率的なデータトレーディング市場の構築は、プライバシー侵害、データ独占、誤用といった問題に直面している。
プライバシとデータ価格の方法を保護するアルゴリズムを提案している多くの研究にもかかわらず、これらの問題とシステム的解決策の包括的な理解はいまだ解明されていない。
本稿では,データトレーディング研究の広範なレビューと評価を行い,既存の問題,研究ギャップの特定,潜在的な解決策の提案を行う。
課題を3つの主要な分野に分類する。コンプライアンス・チャレンジ,コラテラル・コンシークエンス,コスト・トランザクション(“3C問題”)。
文献の定量的解析を通じて、孤立解から統合解へのパラダイムシフトを観察する。
正しいあいまいさの未解決問題に対処するため、個人が所有していないデータを使って利益を得ることのできる、新しい概念「データ活用」を紹介します。
この概念は、データをより従来的な生産要素として再編成し、確立された経済理論と整合させ、研究理論、技術ツール、プラットフォームの包括的な枠組みの道を開くのに役立つ。
この調査は、研究者、実践家、政策立案者に貴重な洞察とガイダンスを提供し、デジタル経済の発展に寄与することを願っている。
関連論文リスト
- A Survey on Data Markets [73.07800441775814]
より大きな福祉のためのトレーディングデータの増加は、データ市場の台頭につながっている。
データ市場とは、データセットやデータデリバティブを含むデータプロダクトの交換が行われるメカニズムである。
これは、価格やデータの分散など、いくつかの機能が相互作用するコーディネートメカニズムとして機能する。
論文 参考訳(メタデータ) (2024-11-09T15:09:24Z) - Tabular Data Synthesis with Differential Privacy: A Survey [24.500349285858597]
データ共有はコラボレーティブなイノベーションの前提条件であり、さまざまなデータセットを活用して深い洞察を得ることを可能にします。
データ合成は、実際のデータの統計特性を保存する人工データセットを生成することで、この問題に対処する。
プライバシーに配慮したデータ共有に対する、有望なアプローチとして、異なるプライベートなデータ合成が登場している。
論文 参考訳(メタデータ) (2024-11-04T06:32:48Z) - Data Issues in Industrial AI System: A Meta-Review and Research Strategy [10.540603300770885]
人工知能(AI)は、産業システムにおいてますます重要な役割を担っている。
近年、さまざまな業界でAIを採用する傾向にあるが、実際のAIの採用は認識されるほど発展していない。
これらのデータ問題にどのように対処するかは、業界と学術の両方に直面する重要な懸念事項である。
論文 参考訳(メタデータ) (2024-06-22T08:36:59Z) - Lazy Data Practices Harm Fairness Research [49.02318458244464]
本稿では,公正な機械学習データセットを包括的に分析し,不反射的手法がアルゴリズム的公正度発見の到達度と信頼性をいかに妨げているかを示す。
本分析では,(1)データと評価における特定の保護属性の表現のテクスブフラック,(2)データ前処理におけるマイノリティの広汎なテキストbf,(3)フェアネス研究の一般化を脅かすテキストbfopaqueデータ処理の3つの分野について検討した。
この研究は、公正なMLにおけるデータプラクティスの批判的な再評価の必要性を強調し、データセットのソーシングと使用の両方を改善するための指針を提供する。
論文 参考訳(メタデータ) (2024-04-26T09:51:24Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - Big Data Privacy in Emerging Market Fintech and Financial Services: A Research Agenda [0.9310318514564271]
白書では、新興市場および金融サービスにおけるデータプライバシの問題と解決策の理解を深めるための研究課題について述べる。
我々は、包括的な分析、データプライバシのローカル定義の理解、リスクの主な原因の文書化、潜在的な技術的解決策の5つの研究分野について強調する。
この研究課題が、新興市場におけるプライバシーの多面的な性質に注目されることを願っている。
論文 参考訳(メタデータ) (2023-10-08T02:11:19Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - A Survey of Data Pricing for Data Marketplaces [77.3189288320768]
本稿では,既存のデータ価格研究の現状を概観する。
我々の重要な貢献は、データ価格を決定する異なる属性を統一するデータ価格研究の新しい分類である。
論文 参考訳(メタデータ) (2023-03-07T04:35:56Z) - Algorithmic Fairness Datasets: the Story so Far [68.45921483094705]
データ駆動アルゴリズムは、人々の幸福に直接影響し、批判的な決定をサポートするために、さまざまな領域で研究されている。
研究者のコミュニティは、既存のアルゴリズムの株式を調査し、新しいアルゴリズムを提案し、歴史的に不利な人口に対する自動意思決定のリスクと機会の理解を深めてきた。
公正な機械学習の進歩はデータに基づいており、適切に文書化された場合にのみ適切に使用できる。
残念なことに、アルゴリズムフェアネスコミュニティは、特定のリソース(オパシティ)に関する情報の不足と利用可能な情報の分散(スパーシティ)によって引き起こされる、集合的なデータドキュメント負債に悩まされている。
論文 参考訳(メタデータ) (2022-02-03T17:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。