論文の概要: Simple Fermionic backflow states via a systematically improvable tensor decomposition
- arxiv url: http://arxiv.org/abs/2407.11779v2
- Date: Mon, 28 Oct 2024 12:05:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 20:59:00.595751
- Title: Simple Fermionic backflow states via a systematically improvable tensor decomposition
- Title(参考訳): 体系的に不変なテンソル分解による単純なフェルミオン逆流状態
- Authors: Massimo Bortone, Yannic Rath, George H. Booth,
- Abstract要約: 相関電子の波動関数に対して,機械学習のパラメータ化とテンソル階数分解の場を近づける効果的なアンザッツを提案する。
CANDECOMP/PARAFAC (CP) Tenor Factorization of a general backflow transformation in second Quantization for a simple, compact and systematically improvable Fermionic state。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an effective ansatz for the wave function of correlated electrons that brings closer the fields of machine learning parameterizations and tensor rank decompositions. We consider a CANDECOMP/PARAFAC (CP) tensor factorization of a general backflow transformation in second quantization for a simple, compact and systematically improvable Fermionic state. This directly encodes $N$-body correlations without the ordering dependence of other tensor decompositions. We consider and explicitly demonstrate various controllable truncations, in the rank and range of the backflow correlations or magnitude of local energy contributions, in order to systematically affect scaling reductions to $\mathcal{O}[N^{3-4}]$. Benchmarking against small Fermi-Hubbard and chemical systems reveals an improvement over other NQS-like models, while extending towards larger strongly correlated ab initio systems demonstrates competitive accuracy with more established DMRG techniques on ab initio 2D hydrogenic lattices with realistic long-range Coulomb interactions.
- Abstract(参考訳): 相関電子の波動関数に対して,機械学習のパラメータ化とテンソル階数分解の場を近づける効果的なアンザッツを提案する。
CANDECOMP/PARAFAC (CP) Tenor Factorization of a general backflow transformation in second Quantization for a simple, compact and systematically improvable Fermionic state。
これは他のテンソル分解の順序依存なしに、直接$N$ボディの相関を符号化する。
我々は,スケール縮小を$\mathcal{O}[N^{3-4}]$に体系的に影響を及ぼすために,バックフロー相関や局所エネルギー寄与量のランクと範囲において,様々な制御可能なトランケーションを考察し,明示的に示す。
小さなフェルミ・ハバードや化学系に対するベンチマークでは、他のNQSのようなモデルよりも改善されているのに対し、より大きく相関したab initio系への拡張は、現実的な長距離クーロン相互作用を持つb initio 2D水素格子上のより確立されたDMRG技術との競争精度を示している。
関連論文リスト
- Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations [0.0]
本稿では格子対称性をNeural Slater-Backflow-Jastrow波動関数アンサテイズに埋め込むフレームワークを提案する。
我々は、我々のモデルが基底状態と低い励起状態をターゲットにする方法を実証する。
論文 参考訳(メタデータ) (2024-06-13T13:01:50Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Applications of flow models to the generation of correlated lattice QCD ensembles [69.18453821764075]
機械学習された正規化フローは、格子量子場理論の文脈で、異なる作用パラメータで格子ゲージ場の統計的に相関したアンサンブルを生成するために用いられる。
本研究は,これらの相関を可観測物の計算における分散低減に活用する方法を実証する。
論文 参考訳(メタデータ) (2024-01-19T18:33:52Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
本稿では,メモリ要求を低減し,より一般化したデータ効率・並列化可能な演算子学習手法を提案する。
MG-TFNOは、実世界の実世界の現象の局所的構造と大域的構造を活用することで、大規模な分解能にスケールする。
乱流ナビエ・ストークス方程式において150倍以上の圧縮で誤差の半分以下を達成できる優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-29T20:18:52Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Disentangling Interacting Systems with Fermionic Gaussian Circuits:
Application to the Single Impurity Anderson Model [0.0]
フェルミオンガウス状態の圧縮により得られるユニタリゲートによる基底の変化を、様々なテンソルネットワークに対応する量子回路に導入する。
これらの回路は、基底状態の絡み合いエントロピーを低減し、密度行列再正規化群のようなアルゴリズムの性能を向上させることができる。
論文 参考訳(メタデータ) (2022-12-19T19:11:16Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
量子系の外部自由度への不可避結合は、散逸(非単体)ダイナミクスをもたらす。
本稿では,グリーン関数の(散逸的な)格子計算に基づいて,これらのシステムに対処する手法を提案する。
本手法のパワーを,複雑性を増大させる駆動散逸型ボゾン鎖のいくつかの例で説明する。
論文 参考訳(メタデータ) (2022-02-15T19:00:09Z) - Boundary Chaos [0.0]
多体量子系におけるスクランブルは、当初は局所可観測体がユニタリ力学の下で利用可能な空間全体に均一に拡散する原因である。
本稿では,システムの境界上に配置された不純物相互作用によってエルゴディディティが誘導される自由量子回路モデルを提案する。
論文 参考訳(メタデータ) (2021-12-09T18:34:08Z) - A Multisite Decomposition of the Tensor Network Path Integrals [0.0]
我々は、テンソルネットワークパス積分(TNPI)フレームワークを拡張し、局所的な散逸環境を持つ量子システムを効率的にシミュレートする。
MS-TNPI法は溶媒と結合した様々な拡張量子系の研究に有用である。
論文 参考訳(メタデータ) (2021-09-20T17:55:53Z) - A tensor network representation of path integrals: Implementation and
analysis [0.0]
ファインマン・ヴァーノン効果関数を含む経路積分シミュレーションのテンソルネットワークに基づく新しい分解法を提案する。
影響関数によって導入された有限の一時的な非局所相互作用は、行列積状態表現を用いて非常に効率的に捉えることができる。
AP-TNPIフレームワークの柔軟性により、非平衡量子力学のための経路積分法ファミリーに新たな期待が持てる。
論文 参考訳(メタデータ) (2021-06-23T16:41:54Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
量子情報力学と熱化を特徴付けるツールとして、OTOC(Out-of-time-orderor)が確立されている。
我々は、OTOCが、ETH(Eigenstate Thermalisation hypothesis)の詳細な詳細を調査するための、本当に正確なツールであることを明確に示している。
無限温度状態における局所作用素の和からなる可観測物の一般クラスに対して、$omega_textrmGOE$の有限サイズスケーリングを推定する。
論文 参考訳(メタデータ) (2021-03-01T17:51:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。