論文の概要: The Great AI Witch Hunt: Reviewers Perception and (Mis)Conception of Generative AI in Research Writing
- arxiv url: http://arxiv.org/abs/2407.12015v1
- Date: Thu, 27 Jun 2024 02:38:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 11:20:27.773601
- Title: The Great AI Witch Hunt: Reviewers Perception and (Mis)Conception of Generative AI in Research Writing
- Title(参考訳): The Great AI Witch Hunt:Reviewers Perception and (Mis)Conception of Generative AI in Research Writing
- Authors: Hilda Hadan, Derrick Wang, Reza Hadi Mogavi, Joseph Tu, Leah Zhang-Kennedy, Lennart E. Nacke,
- Abstract要約: 研究執筆におけるジェネレーティブAI(GenAI)の利用は急速に増加している。
ピアレビュアーがAIによる増補された写本をどう認識するか、それとも誤認しているかは明らかでない。
我々の研究結果は、AIによって強化された文章は可読性、言語多様性、情報性を改善するが、しばしば研究の詳細や著者からの反射的な洞察を欠いていることを示唆している。
- 参考スコア(独自算出の注目度): 25.73744132026804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI (GenAI) use in research writing is growing fast. However, it is unclear how peer reviewers recognize or misjudge AI-augmented manuscripts. To investigate the impact of AI-augmented writing on peer reviews, we conducted a snippet-based online survey with 17 peer reviewers from top-tier HCI conferences. Our findings indicate that while AI-augmented writing improves readability, language diversity, and informativeness, it often lacks research details and reflective insights from authors. Reviewers consistently struggled to distinguish between human and AI-augmented writing but their judgements remained consistent. They noted the loss of a "human touch" and subjective expressions in AI-augmented writing. Based on our findings, we advocate for reviewer guidelines that promote impartial evaluations of submissions, regardless of any personal biases towards GenAI. The quality of the research itself should remain a priority in reviews, regardless of any preconceived notions about the tools used to create it. We emphasize that researchers must maintain their authorship and control over the writing process, even when using GenAI's assistance.
- Abstract(参考訳): 研究執筆におけるジェネレーティブAI(GenAI)の利用は急速に増加している。
しかし、ピアレビュアーがどのようにAIによる増補された写本を認識または誤認しているかは明らかでない。
ピアレビューに対するAI強化書き込みの影響を調査するため,トップレベルのHCIカンファレンスの17人のピアレビュアーを対象に,スニペットベースのオンライン調査を実施した。
我々の研究結果は、AIによって強化された文章は可読性、言語多様性、情報性を改善するが、しばしば研究の詳細や著者からの反射的な洞察を欠いていることを示唆している。
審査員は、人間とAIに強化された文章の区別に一貫して苦労したが、彼らの判断は一貫していた。
彼らはAIを活用した文章における「人間の触覚」と主観的な表現の喪失について言及した。
我々は,GenAIに対する個人的偏見に関係なく,応募の公平な評価を促進するレビュアーガイドラインを提唱する。
研究そのものの質は、それを作るツールに関する先入観に拘わらず、レビューにおいて優先されるべきである。
我々は,GenAIの助力を用いても,研究者は執筆プロセスのオーサシップと管理を保たなければならないことを強調する。
関連論文リスト
- What Can Natural Language Processing Do for Peer Review? [173.8912784451817]
現代の科学ではピアレビューが広く使われているが、それは難しく、時間がかかり、エラーを起こしやすい。
ピアレビューに関わるアーティファクトは大部分がテキストベースであるため、自然言語処理はレビューを改善する大きな可能性を秘めている。
筆者らは、原稿提出からカメラ対応リビジョンまでの各工程について詳述し、NLP支援の課題と機会について論じる。
論文 参考訳(メタデータ) (2024-05-10T16:06:43Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - PaperCard for Reporting Machine Assistance in Academic Writing [48.33722012818687]
2022年11月にOpenAIが発表した質問応答システムChatGPTは,学術論文作成に活用可能な,さまざまな機能を実証した。
これは学術における著者概念に関する批判的な疑問を提起する。
我々は、人間の著者が記述プロセスにおけるAIの使用を透過的に宣言するための文書である"PaperCard"というフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T14:28:04Z) - Experimental Evidence on Negative Impact of Generative AI on Scientific
Learning Outcomes [0.0]
AIを要約に使用することで、品質と出力の両方が大幅に改善された。
読書のトピックと優れた読み書きスキルに強い背景を持つ人は、最も有益であった。
論文 参考訳(メタデータ) (2023-09-23T21:59:40Z) - A Critical Examination of the Ethics of AI-Mediated Peer Review [0.0]
人工知能(AI)システムの最近の進歩は、学術的な査読のための約束と危機を提供する。
人間のピアレビューシステムは、バイアスや虐待、透明性の欠如など、関連する問題にも悩まされている。
AI駆動のピアレビューの正当性は、科学的倫理と一致している。
論文 参考訳(メタデータ) (2023-09-02T18:14:10Z) - The Future of AI-Assisted Writing [0.0]
我々は、情報検索レンズ(プル・アンド・プッシュ)を用いて、そのようなツールの比較ユーザスタディを行う。
我々の研究結果によると、ユーザーは執筆におけるAIのシームレスな支援を歓迎している。
ユーザはAI支援の書き込みツールとのコラボレーションも楽しんだが、オーナシップの欠如を感じなかった。
論文 参考訳(メタデータ) (2023-06-29T02:46:45Z) - ChatGPT and Works Scholarly: Best Practices and Legal Pitfalls in
Writing with AI [9.550238260901121]
我々は、このようなAIによる書き起こしが著作権に違反しているか、公正使用の安全な港に落ちているかを評価するためのアプローチを提供する。
AIは今後数年でより有能になる可能性が高いため、学術的な執筆活動にAIを統合するのは適切である。
論文 参考訳(メタデータ) (2023-05-04T15:38:20Z) - The AI Ghostwriter Effect: When Users Do Not Perceive Ownership of
AI-Generated Text But Self-Declare as Authors [42.72188284211033]
パーソナライズされた言語生成のためのヒューマンAIコラボレーションにおけるオーサシップとオーサシップについて検討する。
AIゴーストライター効果: ユーザは自分自身をAI生成テキストの所有者や作者とはみなさない。
著者の枠組みに適応するための基盤を構築するために,心理学的所有権と人間とAIの相互作用との関連性について考察する。
論文 参考訳(メタデータ) (2023-03-06T16:53:12Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
我々は、最先端自然言語処理(NLP)モデルを用いて、科学論文の第一パスピアレビューを生成する可能性について論じる。
我々は、機械学習領域で論文のデータセットを収集し、各レビューでカバーされているさまざまなコンテンツに注釈を付け、レビューを生成するために論文を取り込み、ターゲットの要約モデルを訓練する。
総合的な実験結果から、システム生成レビューは、人間によるレビューよりも、論文の多くの側面に触れる傾向にあることが示された。
論文 参考訳(メタデータ) (2021-01-30T07:16:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。