On the Robustness of Fully-Spiking Neural Networks in Open-World Scenarios using Forward-Only Learning Algorithms
- URL: http://arxiv.org/abs/2407.14097v1
- Date: Fri, 19 Jul 2024 08:08:17 GMT
- Title: On the Robustness of Fully-Spiking Neural Networks in Open-World Scenarios using Forward-Only Learning Algorithms
- Authors: Erik B. Terres-Escudero, Javier Del Ser, Aitor MartÃnez-Seras, Pablo Garcia-Bringas,
- Abstract summary: We develop a novel algorithm for Out-of-Distribution (OoD) detection using the Forward-Forward Algorithm (FFA)
Our approach measures the likelihood of a sample belonging to the in-distribution (ID) data by using the distance from the latent representation of samples to class-representative manifold.
We also propose a gradient-free attribution technique that highlights the features of a sample pushing it away from the distribution of any class.
- Score: 6.7236795813629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the last decade, Artificial Intelligence (AI) models have rapidly integrated into production pipelines propelled by their excellent modeling performance. However, the development of these models has not been matched by advancements in algorithms ensuring their safety, failing to guarantee robust behavior against Out-of-Distribution (OoD) inputs outside their learning domain. Furthermore, there is a growing concern with the sustainability of AI models and their required energy consumption in both training and inference phases. To mitigate these issues, this work explores the use of the Forward-Forward Algorithm (FFA), a biologically plausible alternative to Backpropagation, adapted to the spiking domain to enhance the overall energy efficiency of the model. By capitalizing on the highly expressive topology emerging from the latent space of models trained with FFA, we develop a novel FF-SCP algorithm for OoD Detection. Our approach measures the likelihood of a sample belonging to the in-distribution (ID) data by using the distance from the latent representation of samples to class-representative manifolds. Additionally, to provide deeper insights into our OoD pipeline, we propose a gradient-free attribution technique that highlights the features of a sample pushing it away from the distribution of any class. Multiple experiments using our spiking FFA adaptation demonstrate that the achieved accuracy levels are comparable to those seen in analog networks trained via back-propagation. Furthermore, OoD detection experiments on multiple datasets prove that FF-SCP outperforms avant-garde OoD detectors within the spiking domain in terms of several metrics used in this area. We also present a qualitative analysis of our explainability technique, exposing the precision by which the method detects OoD features, such as embedded artifacts or missing regions.
Related papers
- Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection [30.02748131967826]
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples.
Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space.
We propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection.
arXiv Detail & Related papers (2024-11-16T04:54:07Z) - Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Test-Time Domain Generalization for Face Anti-Spoofing [60.94384914275116]
Face Anti-Spoofing (FAS) is pivotal in safeguarding facial recognition systems against presentation attacks.
We introduce a novel Test-Time Domain Generalization framework for FAS, which leverages the testing data to boost the model's generalizability.
Our method, consisting of Test-Time Style Projection (TTSP) and Diverse Style Shifts Simulation (DSSS), effectively projects the unseen data to the seen domain space.
arXiv Detail & Related papers (2024-03-28T11:50:23Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - SEE-OoD: Supervised Exploration For Enhanced Out-of-Distribution
Detection [11.05254400092658]
We propose a Wasserstein-score-based generative adversarial training scheme to enhance OoD detection accuracy.
Specifically, the generator explores OoD spaces and generates synthetic OoD samples using feedback from the discriminator.
We demonstrate that the proposed method outperforms state-of-the-art techniques on various computer vision datasets.
arXiv Detail & Related papers (2023-10-12T05:20:18Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Unsupervised Domain Adaptive Salient Object Detection Through
Uncertainty-Aware Pseudo-Label Learning [104.00026716576546]
We propose to learn saliency from synthetic but clean labels, which naturally has higher pixel-labeling quality without the effort of manual annotations.
We show that our proposed method outperforms the existing state-of-the-art deep unsupervised SOD methods on several benchmark datasets.
arXiv Detail & Related papers (2022-02-26T16:03:55Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - Entropy Maximization and Meta Classification for Out-Of-Distribution
Detection in Semantic Segmentation [7.305019142196585]
"Out-of-distribution" (OoD) samples are crucial for many applications such as automated driving.
A natural baseline approach to OoD detection is to threshold on the pixel-wise softmax entropy.
We present a two-step procedure that significantly improves that approach.
arXiv Detail & Related papers (2020-12-09T11:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.