論文の概要: Accelerated Quantum Amplitude Estimation without QFT
- arxiv url: http://arxiv.org/abs/2407.16795v1
- Date: Tue, 23 Jul 2024 18:49:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 15:44:18.273577
- Title: Accelerated Quantum Amplitude Estimation without QFT
- Title(参考訳): QFTのない加速量子振幅推定
- Authors: Alet Roux, Tomasz Zastawniak,
- Abstract要約: 我々は、現在利用可能なアプローチと比較して優れた性能(より低い量子計算複雑性と高速な古典計算部分)を実現する量子振幅推定アルゴリズムを提唱した。
このアルゴリズムの正しさと量子計算複雑性に縛られる$O(frac1varepsilon)$は、正確な証明によって支持される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We put forward a Quantum Amplitude Estimation algorithm delivering superior performance (lower quantum computational complexity and faster classical computation parts) compared to the approaches available to-date. The algorithm does not relay on the Quantum Fourier Transform and its quantum computational complexity is of order $O(\frac{1}{\varepsilon})$ in terms of the target accuracy $\varepsilon>0$. The $O(\frac{1}{\varepsilon})$ bound on quantum computational complexity is also superior compared to those in the earlier approaches due to smaller constants. Moreover, a much tighter bound is obtained by means of computer-assisted estimates for the expected value of quantum computational complexity. The correctness of the algorithm and the $O(\frac{1}{\varepsilon})$ bound on quantum computational complexity are supported by precise proofs.
- Abstract(参考訳): 我々は、現在利用可能なアプローチと比較して優れた性能(より低い量子計算複雑性と高速な古典計算部分)を実現する量子振幅推定アルゴリズムを提唱した。
このアルゴリズムは量子フーリエ変換を中継せず、その量子計算複雑性は、目標精度$\varepsilon>0$の点で、$O(\frac{1}{\varepsilon})$である。
量子計算複雑性に縛られる$O(\frac{1}{\varepsilon})$は、より小さい定数のため以前のアプローチよりも優れている。
さらに、より厳密なバウンダリは、計算複雑性の期待値に対するコンピュータ支援推定によって得られる。
このアルゴリズムの正しさと$O(\frac{1}{\varepsilon})$の量子計算複雑性への束縛は、正確な証明によって支持される。
関連論文リスト
- Halving the Cost of Quantum Algorithms with Randomization [0.138120109831448]
量子信号処理(QSP)は、線形演算子の変換を実装するための体系的なフレームワークを提供する。
近年の研究では、量子チャネルへのユニタリゲートを促進する技術であるランダム化コンパイルが開発されている。
提案アルゴリズムは, 平均進化が対象関数に収束するように戦略的に選択されたランダム化の確率的混合を実装し, 誤差は等価個体よりも2次的に小さい。
論文 参考訳(メタデータ) (2024-09-05T17:56:51Z) - Estimating quantum amplitudes can be exponentially improved [11.282486674587236]
量子振幅の推定は、量子コンピューティングの基本的な課題である。
純状態を行列形式に変換することによって量子振幅を推定するための新しい枠組みを提案する。
我々のフレームワークは、それぞれ標準量子極限$epsilon-2$とハイゼンベルク極限$epsilon-1$を達成する。
論文 参考訳(メタデータ) (2024-08-25T04:35:53Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - Taming Quantum Time Complexity [45.867051459785976]
時間複雑性の設定において、正確さと遠心性の両方を達成する方法を示します。
我々は、トランスデューサと呼ばれるものに基づく量子アルゴリズムの設計に新しいアプローチを採用する。
論文 参考訳(メタデータ) (2023-11-27T14:45:19Z) - Quantum Phase Estimation by Compressed Sensing [0.0]
圧縮センシングに基づく初期量子コンピュータのための新しいハイゼンベルク制限量子位相推定アルゴリズムを提案する。
我々のアルゴリズムは、合計ランタイム$mathcalO(epsilon-1textpolylog(epsilon-1))$で周波数を復元することができる。
また、より一般的な量子固有値推定問題(QEEP)を考察し、オフグリッド圧縮センシングがQEEPの解決の有力な候補であることを示す。
論文 参考訳(メタデータ) (2023-06-12T10:21:59Z) - Quantum Distance Calculation for $\epsilon$-Graph Construction [0.0]
我々は、$epsilon$-graphsの量子距離計算における量子優位性の可能性について検討する。
既存の量子多状態SWAPテストベースアルゴリズムに頼って、2つの点を正確に識別するクエリの複雑さは$epsilon$-neighbours ではなく、少なくとも O(n3 / ln n) であることを示す。
論文 参考訳(メタデータ) (2023-06-07T09:43:28Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
証明可能な性能保証を伴う忠実度推定のための新しい,効率的な量子アルゴリズムを開発した。
我々のアルゴリズムは量子特異値変換のような高度な量子線型代数技術を用いる。
任意の非自明な定数加算精度に対する忠実度推定は一般に困難であることを示す。
論文 参考訳(メタデータ) (2022-03-30T02:02:16Z) - Polynomial T-depth Quantum Solvability of Noisy Binary Linear Problem:
From Quantum-Sample Preparation to Main Computation [0.0]
雑音二元線形問題(NBLP)の量子可解性について完全解析する。
NBLPの解くコストは、指数関数的に増大する論理量子ビットを犠牲にして、問題の規模で解決できることが示される。
論文 参考訳(メタデータ) (2021-09-23T07:46:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。