論文の概要: Artificial neural networks on graded vector spaces
- arxiv url: http://arxiv.org/abs/2407.19031v1
- Date: Fri, 26 Jul 2024 18:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 20:12:15.999084
- Title: Artificial neural networks on graded vector spaces
- Title(参考訳): 次数ベクトル空間上の人工ニューラルネットワーク
- Authors: T. Shaska,
- Abstract要約: 我々は、データの異なる特徴が異なる重み(重み)を持つ場合に適した、次数付きベクトル空間のための新しい人工ニューラルネットワークモデルを開発する。
このようなモデルが数学的に設計されるのはこれが初めてであり、通常のベクトル空間上でのニューラルネットワークよりも優れた性能が期待されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop new artificial neural network models for graded vector spaces, which are suitable when different features in the data have different significance (weights). This is the first time that such models are designed mathematically and they are expected to perform better than neural networks over usual vector spaces, which are the special case when the gradings are all 1s.
- Abstract(参考訳): 我々は,データ内の異なる特徴が異なる重み(重み)を持つ場合に適した,次数付きベクトル空間のための新しい人工ニューラルネットワークモデルを開発した。
このようなモデルが数学的に設計されるのはこれが初めてであり、通常のベクトル空間上でのニューラルネットワークよりも優れた性能が期待されている。
関連論文リスト
- Equivariant Neural Tangent Kernels [2.373992571236766]
我々は、グループ畳み込みニューラルネットワークのニューラルネットワーク(NTK)に対する明示的な表現を与える。
数値実験では, 医用画像の分類タスクにおいて, 非同変NTKに対して, 同変NTKよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-10T17:43:13Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Wide and Deep Neural Networks Achieve Optimality for Classification [23.738242876364865]
我々は、最適性を達成するニューラルネットワーク分類器の明示的な集合を同定し、構築する。
特に、最適性を実現するネットワーク構築に使用できる明示的なアクティベーション関数を提供する。
その結果,過度な深度が有害な回帰タスクとは対照的に,分類タスクにディープネットワークを使用することの利点が浮き彫りになった。
論文 参考訳(メタデータ) (2022-04-29T14:27:42Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
使用中のニューラルネットワークの主要なタイプであるニューラルネットワークについて研究する。
最適化されたニューラルネットワークの幅が無限大になる傾向があるため、トレーニングセットの予測分散はゼロになる。
論文 参考訳(メタデータ) (2022-01-30T04:52:31Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Deep Randomized Neural Networks [12.333836441649343]
ランダム化されたニューラルネットワークは、ほとんどの接続が固定されたニューラルネットワークの挙動を探索する。
本章はランダム化ニューラルネットワークの設計と解析に関する主要な側面をすべて調査する。
論文 参考訳(メタデータ) (2020-02-27T17:57:58Z) - Mean-Field and Kinetic Descriptions of Neural Differential Equations [0.0]
この研究では、ニューラルネットワークの特定のクラス、すなわち残留ニューラルネットワークに焦点を当てる。
我々は、ネットワークのパラメータ、すなわち重みとバイアスに関する定常状態と感度を分析する。
残留ニューラルネットワークにインスパイアされた微視的ダイナミクスの修正は、ネットワークのフォッカー・プランクの定式化につながる。
論文 参考訳(メタデータ) (2020-01-07T13:41:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。