論文の概要: A Mathematical Analysis of Neural Operator Behaviors
- arxiv url: http://arxiv.org/abs/2410.21481v1
- Date: Mon, 28 Oct 2024 19:38:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:38:49.760893
- Title: A Mathematical Analysis of Neural Operator Behaviors
- Title(参考訳): ニューラル演算子の挙動の数学的解析
- Authors: Vu-Anh Le, Mehmet Dik,
- Abstract要約: 本稿では,ニューラルネットワークの動作を分析するための厳密な枠組みを提案する。
我々はそれらの安定性、収束性、クラスタリングダイナミクス、普遍性、一般化誤差に焦点を当てる。
我々は,ニューラル演算子に基づく手法の今後の設計のために,単一設定で明確かつ統一的なガイダンスを提供することを目指している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Neural operators have emerged as transformative tools for learning mappings between infinite-dimensional function spaces, offering useful applications in solving complex partial differential equations (PDEs). This paper presents a rigorous mathematical framework for analyzing the behaviors of neural operators, with a focus on their stability, convergence, clustering dynamics, universality, and generalization error. By proposing a list of novel theorems, we provide stability bounds in Sobolev spaces and demonstrate clustering in function space via gradient flow interpretation, guiding neural operator design and optimization. Based on these theoretical gurantees, we aim to offer clear and unified guidance in a single setting for the future design of neural operator-based methods.
- Abstract(参考訳): ニューラルネットワークは無限次元関数空間間の写像を学習するための変換ツールとして登場し、複素偏微分方程式(PDE)の解法として有用である。
本稿では,ニューラルネットワークの安定性,収束性,クラスタリングダイナミクス,普遍性,一般化誤差に着目し,ニューラルネットワークの挙動を解析するための厳密な数学的枠組みを提案する。
新たな定理のリストを提案することにより、ソボレフ空間の安定性境界を提供し、勾配流の解釈、ニューラル作用素の設計と最適化を導くことによって関数空間のクラスタリングを実証する。
これらの理論的ガイドに基づいて,ニューラル演算子に基づく手法の今後の設計のために,単一設定で明確かつ統一的なガイダンスを提供することを目標としている。
関連論文リスト
- How Analysis Can Teach Us the Optimal Way to Design Neural Operators [0.0]
我々は,ニューラル演算子の安定性,収束性,一般化,計算効率の向上を目指す。
我々は、高次元の安定性、指数収束、ニューラル作用素の普遍性など、重要な理論的洞察を再考する。
論文 参考訳(メタデータ) (2024-11-04T03:08:26Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Disentangled Representation Learning for Parametric Partial Differential Equations [31.240283037552427]
ニューラル演算子パラメータから不整合表現を学習するための新しいパラダイムを提案する。
DisentangOは、ブラックボックス・ニューラル・オペレーターパラメータに埋め込まれた変動の潜在的物理的要因を明らかにし、取り除くように設計された、新しいハイパーニューラル・オペレーターアーキテクチャである。
本研究では、DentangOが有意義かつ解釈可能な潜在特徴を効果的に抽出し、ニューラルネットワークフレームワークにおける予測性能と身体的理解の分離を橋渡しすることを示す。
論文 参考訳(メタデータ) (2024-10-03T01:40:39Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
ニューラル作用素におけるベイズの不確かさを近似する新しい枠組みを導入する。
我々の手法は関数型プログラミングからカリー化の概念の確率論的類似体と解釈できる。
我々は、異なるタイプの偏微分方程式への応用を通して、我々のアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - Operator Learning: Algorithms and Analysis [8.305111048568737]
オペレータ学習(Operator learning)は、機械学習から、関数のバナッハ空間間の近似演算子へのアイデアの適用を指す。
このレビューは、有限次元ユークリッド空間上で定義される関数の近似におけるディープニューラルネットワークの成功に基づいて構築されたニューラル演算子に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-24T04:40:27Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。