論文の概要: Generative Learning of the Solution of Parametric Partial Differential Equations Using Guided Diffusion Models and Virtual Observations
- arxiv url: http://arxiv.org/abs/2408.00157v1
- Date: Wed, 31 Jul 2024 20:52:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 22:16:07.684023
- Title: Generative Learning of the Solution of Parametric Partial Differential Equations Using Guided Diffusion Models and Virtual Observations
- Title(参考訳): 誘導拡散モデルと仮想観測を用いたパラメトリック部分微分方程式の解の生成学習
- Authors: Han Gao, Sebastian Kaltenbach, Petros Koumoutsakos,
- Abstract要約: 本研究では,高次元パラメトリックシステムをモデル化するための生成学習フレームワークを提案する。
我々は,部分微分方程式(PDE)で記述されたシステムについて,構造的あるいは非構造的グリッドで識別する。
- 参考スコア(独自算出の注目度): 4.798951413107239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a generative learning framework to model high-dimensional parametric systems using gradient guidance and virtual observations. We consider systems described by Partial Differential Equations (PDEs) discretized with structured or unstructured grids. The framework integrates multi-level information to generate high fidelity time sequences of the system dynamics. We demonstrate the effectiveness and versatility of our framework with two case studies in incompressible, two dimensional, low Reynolds cylinder flow on an unstructured mesh and incompressible turbulent channel flow on a structured mesh, both parameterized by the Reynolds number. Our results illustrate the framework's robustness and ability to generate accurate flow sequences across various parameter settings, significantly reducing computational costs allowing for efficient forecasting and reconstruction of flow dynamics.
- Abstract(参考訳): 勾配誘導と仮想観測を用いた高次元パラメトリックシステムのモデル化のための生成学習フレームワークを提案する。
我々は,部分微分方程式(PDE)で記述されたシステムについて,構造的あるいは非構造的グリッドで識別する。
このフレームワークはマルチレベル情報を統合し、システムダイナミクスの高忠実度時間シーケンスを生成する。
構造メッシュ上の非圧縮性, 2次元低レイノルズ気筒流, 構造メッシュ上の非圧縮性乱流流, およびReynolds数でパラメータ化された非圧縮性乱流流の2つのケーススタディにより, 本フレームワークの有効性と汎用性を実証した。
本研究は, 各種パラメータ設定にまたがって正確な流れ列を生成するためのフレームワークの頑健さと能力を示し, 計算コストを大幅に削減し, フローダイナミクスの効率的な予測と再構築を可能にした。
関連論文リスト
- Data-driven Modeling of Parameterized Nonlinear Fluid Dynamical Systems with a Dynamics-embedded Conditional Generative Adversarial Network [0.0]
本稿では,動的生成条件付きGAN(Dyn-cGAN)を代理モデルとして,パラメータ化非線形流体力学系を正確に予測する。
学習したDyn-cGANモデルはシステムの流れ場を正確に予測するためにシステムパラメータを考慮に入れている。
論文 参考訳(メタデータ) (2024-12-23T20:50:20Z) - A Data-Driven Framework for Discovering Fractional Differential Equations in Complex Systems [8.206685537936078]
本研究では、データから直接分数微分方程式(FDE)を発見するための段階的なデータ駆動フレームワークを提案する。
我々のフレームワークは、スパース観測とノイズ観測の分離と再構成のための代理モデルとしてディープニューラルネットワークを適用している。
本研究は, 凍結土壌のクリープ挙動に関する, 合成異常拡散データおよび実験データを含む, 各種データセットにわたるフレームワークの検証を行った。
論文 参考訳(メタデータ) (2024-12-05T08:38:30Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
提案されたフレームワークは、オフラインとオンラインの2つのステージで構成されている。
オンラインステージでは、これらのLANDOモデルを活用して、所望のタイミングで新しいデータを生成する。
高次元力学系に次元還元法を適用して, トレーニングの計算コストを低減させる。
論文 参考訳(メタデータ) (2024-09-25T11:13:50Z) - Recurrent Deep Kernel Learning of Dynamical Systems [0.5825410941577593]
デジタル双対は計算効率の低い低次モデル(ROM)を必要とし、物理的資産の複雑な力学を正確に記述することができる。
データから低次元の潜伏空間を発見するために,データ駆動型非侵入型深層学習法(SVDKL)を提案する。
その結果,本フレームワークは, (i) 測定値の復調と再構成, (ii) システム状態のコンパクトな表現の学習, (iii) 低次元潜在空間におけるシステム進化の予測, (iv) 不確実性をモデル化できることがわかった。
論文 参考訳(メタデータ) (2024-05-30T07:49:02Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Generative Learning for Forecasting the Dynamics of Complex Systems [5.393540462038596]
本稿では,複雑なシステムのシミュレーションを高速化するための生成モデルについて紹介する。
その結果、生成学習は、計算コストを削減し、複雑なシステムの統計特性を正確に予測するための新たなフロンティアを提供することを示した。
論文 参考訳(メタデータ) (2024-02-27T02:44:40Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
まず最初に、このリッチな意味では、ResNetsは意味のある動的でないことを示します。
次に、ニューラルネットワークモデルが連続力学系を表現することを実証する。
ResNetアーキテクチャの詳細な一般化としてContinuousNetを紹介します。
論文 参考訳(メタデータ) (2020-08-05T22:54:09Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。