論文の概要: Multiple Greedy Quasi-Newton Methods for Saddle Point Problems
- arxiv url: http://arxiv.org/abs/2408.00241v1
- Date: Thu, 1 Aug 2024 02:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 21:55:12.805085
- Title: Multiple Greedy Quasi-Newton Methods for Saddle Point Problems
- Title(参考訳): サドル点問題に対する多重グレディ準ニュートン法
- Authors: Minheng Xiao, Shi Bo, Zhizhong Wu,
- Abstract要約: ヘッセン点問題の解法としてMultiple Greedysi-SP(MGSR1-SP)法を提案する。
本手法は安定性と効率性を両立させる。
その結果、MGSR1-SPの性能は幅広い機械学習アプリケーションで確認された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces the Multiple Greedy Quasi-Newton (MGSR1-SP) method, a novel approach to solving strongly-convex-strongly-concave (SCSC) saddle point problems. Our method enhances the approximation of the squared indefinite Hessian matrix inherent in these problems, significantly improving both stability and efficiency through iterative greedy updates. We provide a thorough theoretical analysis of MGSR1-SP, demonstrating its linear-quadratic convergence rate. Numerical experiments conducted on AUC maximization and adversarial debiasing problems, compared with state-of-the-art algorithms, underscore our method's enhanced convergence rate. These results affirm the potential of MGSR1-SP to improve performance across a broad spectrum of machine learning applications where efficient and accurate Hessian approximations are crucial.
- Abstract(参考訳): 本稿では,SCSCサドル点問題の解法として,Multiple Greedy Quasi-Newton (MGSR1-SP)法を提案する。
本手法は,これらの問題に固有の正方形不定値ヘッセン行列の近似を高め,反復グリーディ更新による安定性と効率を著しく向上させる。
MGSR1-SPの完全理論的解析を行い、その線形4次収束速度を示す。
AUCの最大化と逆偏差問題に対する数値実験は、最先端のアルゴリズムと比較して、我々の手法の収束率の向上を裏付けるものである。
これらの結果は、効率よく正確なヘッセン近似が不可欠である幅広い機械学習アプリケーションにおけるMGSR1-SPの性能向上の可能性を確認するものである。
関連論文リスト
- Quantum Maximum Entropy Inference and Hamiltonian Learning [4.9614587340495]
この研究は、最大エントロピー推論とグラフィカルモデルの学習のためのアルゴリズムを量子領域に拡張する。
量子反復スケーリング(QIS)として知られる一般化は単純であるが、重要な課題は量子問題インスタンスの非可換性にある。
準ニュートン法によるQISとGDの性能向上について検討する。
論文 参考訳(メタデータ) (2024-07-16T08:11:34Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
各成分関数が強く凸であり、リプシッツ連続勾配とヘシアンを持つ有限和最適化問題を考える。
最近提案されたインクリメンタル準ニュートン法は、BFGSの更新に基づいて、局所的な超線形収束率を達成する。
本稿では、対称ランク1更新をインクリメンタルフレームワークに組み込むことにより、より効率的な準ニュートン法を提案する。
論文 参考訳(メタデータ) (2024-02-04T05:54:51Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - COCO Denoiser: Using Co-Coercivity for Variance Reduction in Stochastic
Convex Optimization [4.970364068620608]
我々は,勾配オラクルによって出力される雑音の推定値を改善するために,凸性およびL平滑性を利用する。
問合せ点の数と近さの増加は、より良い勾配推定に繋がることを示す。
また、SGD、Adam、STRSAGAといった既存のアルゴリズムにCOCOをプラグインすることで、バニラ設定にもCOCOを適用します。
論文 参考訳(メタデータ) (2021-09-07T17:21:09Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Saddle Point Optimization with Approximate Minimization Oracle and its
Application to Robust Berthing Control [7.347989843033034]
本稿では,最小化問題を大まかに解決するオラクルのみに依存するサドル点最適化手法を提案する。
我々は、その収束特性を強い凸-凹問題で解析し、その線形収束性を大域的なmin-maxサドル点へ示す。
1+1)-CMA-ES を最小化オラクル、すなわち Adversarial-CMA-ES として開発した手法の実装は、テスト問題に対する既存のアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-05-25T00:08:47Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
本稿では,深層学習(深層AUC)により注目度が高まっている,円滑な非凹部min-max問題の解法に焦点をあてる。
論文 参考訳(メタデータ) (2020-06-12T00:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。