論文の概要: Principal component analysis balancing prediction and approximation accuracy for spatial data
- arxiv url: http://arxiv.org/abs/2408.01662v1
- Date: Sat, 3 Aug 2024 04:24:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 19:00:53.387939
- Title: Principal component analysis balancing prediction and approximation accuracy for spatial data
- Title(参考訳): 空間データに対する主成分分析による予測と近似精度のバランス
- Authors: Si Cheng, Magali N. Blanco, Timothy V. Larson, Lianne Sheppard, Adam Szpiro, Ali Shojaie,
- Abstract要約: 我々は、下流モデルにおける元のデータに対する近似の近接性と低次元スコアの有用性を定式化する。
最適トレードオフを実現するフレキシブル次元削減アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.4849437811455797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dimension reduction is often the first step in statistical modeling or prediction of multivariate spatial data. However, most existing dimension reduction techniques do not account for the spatial correlation between observations and do not take the downstream modeling task into consideration when finding the lower-dimensional representation. We formalize the closeness of approximation to the original data and the utility of lower-dimensional scores for downstream modeling as two complementary, sometimes conflicting, metrics for dimension reduction. We illustrate how existing methodologies fall into this framework and propose a flexible dimension reduction algorithm that achieves the optimal trade-off. We derive a computationally simple form for our algorithm and illustrate its performance through simulation studies, as well as two applications in air pollution modeling and spatial transcriptomics.
- Abstract(参考訳): 次元減少は、しばしば多変量空間データの統計的モデリングや予測の第一歩である。
しかし,既存の次元低減技術の多くは,観測の空間的相関を考慮せず,下流モデリングタスクを低次元表現を見つける際に考慮しない。
我々は、下流モデルにおける元のデータに対する近似の近接性と低次元スコアの有用性を、2つの相補的、時には矛盾する、次元減少の指標として定式化する。
本稿では,既存の手法がこの枠組みにどのような影響を及ぼすかを説明し,最適なトレードオフを実現するフレキシブルな次元削減アルゴリズムを提案する。
本アルゴリズムは, 大気汚染モデルと空間転写学の2つの応用と同様に, シミュレーション研究を通じて, 計算学的に単純な形状を導出し, その性能を示す。
関連論文リスト
- Probabilistic Reduced-Dimensional Vector Autoregressive Modeling with
Oblique Projections [0.7614628596146602]
雑音データから低次元ダイナミクスを抽出する低次元ベクトル自己回帰モデルを提案する。
最適斜め分解は、予測誤差の共分散に関する最良の予測可能性のために導出される。
合成ロレンツシステムとイーストマンケミカルの工業プロセスのデータセットを用いて,提案手法の優れた性能と効率を実証した。
論文 参考訳(メタデータ) (2024-01-14T05:38:10Z) - Symplectic model reduction of Hamiltonian systems using data-driven
quadratic manifolds [0.559239450391449]
高次元ハミルトニアン系のシンプレクティックモデル還元のための2つの新しいアプローチを提案する。
提案手法の中心に位置する状態近似への二次項の追加により、本質的な低次元性を表現することができる。
論文 参考訳(メタデータ) (2023-05-24T18:23:25Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
本稿では t-SNE に基づく新しいグラフベース次元削減手法 LaptSNE を提案する。
具体的には、LaptSNEはグラフラプラシアンの固有値情報を利用して、低次元埋め込みにおけるポテンシャルクラスタを縮小する。
ラプラシアン合成目的による最適化を考える際には、より広い関心を持つであろう勾配を解析的に計算する方法を示す。
論文 参考訳(メタデータ) (2022-07-25T14:10:24Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Sparse Generalized Yule-Walker Estimation for Large Spatio-temporal
Autoregressions with an Application to NO2 Satellite Data [0.0]
高次元モデルのクラスをスパース推定する。
我々は,ユル=ヴァルカー方程式の集合をペナルティ化することにより,空間的および時間的依存を完全駆動的に支配する関係を推定する。
衛星シミュレーションは、競合する手順と比較して強い有限サンプル性能を示す。
論文 参考訳(メタデータ) (2021-08-05T21:51:45Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
システム記述における不確実性定量化(UQ)のための多様体学習に基づく手法を提案する。
提案手法は高精度な近似を達成でき、UQタスクの大幅な高速化につながる。
論文 参考訳(メタデータ) (2021-07-21T00:24:15Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。