論文の概要: LumiGauss: High-Fidelity Outdoor Relighting with 2D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2408.04474v1
- Date: Tue, 6 Aug 2024 23:41:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 15:28:24.603834
- Title: LumiGauss: High-Fidelity Outdoor Relighting with 2D Gaussian Splatting
- Title(参考訳): LumiGauss:2Dガウススプレイティングによる高忠実な屋外リライティング
- Authors: Joanna Kaleta, Kacper Kania, Tomasz Trzcinski, Marek Kowalski,
- Abstract要約: LumiGaussは,2次元ガウススプラッティングによるシーンの3次元再構成と環境照明を実現する技術である。
提案手法は高品質なシーン再構成を実現し,新しい環境マップ下でのリアルな照明合成を実現する。
- 参考スコア(独自算出の注目度): 15.11759492990967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decoupling lighting from geometry using unconstrained photo collections is notoriously challenging. Solving it would benefit many users, as creating complex 3D assets takes days of manual labor. Many previous works have attempted to address this issue, often at the expense of output fidelity, which questions the practicality of such methods. We introduce LumiGauss, a technique that tackles 3D reconstruction of scenes and environmental lighting through 2D Gaussian Splatting. Our approach yields high-quality scene reconstructions and enables realistic lighting synthesis under novel environment maps. We also propose a method for enhancing the quality of shadows, common in outdoor scenes, by exploiting spherical harmonics properties. Our approach facilitates seamless integration with game engines and enables the use of fast precomputed radiance transfer. We validate our method on the NeRF-OSR dataset, demonstrating superior performance over baseline methods. Moreover, LumiGauss can synthesize realistic images when applying novel environment maps.
- Abstract(参考訳): 制約のない写真コレクションを使って幾何学から光を分離することは、非常に難しい。
複雑な3Dアセットを作るには、手作業で何日もかかるからだ。
多くの先行研究がこの問題に対処しようと試みており、しばしば出力の忠実さを犠牲にして、そのような手法の実用性に疑問を呈している。
LumiGaussは,2次元ガウススプラッティングによるシーンの3次元再構成と環境照明を実現する技術である。
提案手法は高品質なシーン再構成を実現し,新しい環境マップ下でのリアルな照明合成を実現する。
また,球面調和特性を利用して,屋外シーンに共通する影の質を高める手法を提案する。
提案手法は,ゲームエンジンとのシームレスな統合を可能にし,高速な事前計算ラジオアンス転送を実現する。
提案手法をNeRF-OSRデータセット上で検証し,ベースライン法よりも優れた性能を示す。
さらに、LumiGaussは、新しい環境マップを適用する際に、リアルな画像を合成することができる。
関連論文リスト
- EnvGS: Modeling View-Dependent Appearance with Environment Gaussian [78.74634059559891]
EnvGSは、環境の反射を捉えるための明示的な3D表現として、ガウスプリミティブのセットを利用する新しいアプローチである。
これらの環境を効率的にレンダリングするために,高速レンダリングにGPUのRTコアを利用するレイトレーシングベースのリフレクションを開発した。
複数の実世界および合成データセットから得られた結果は,本手法がより詳細な反射を生成することを示す。
論文 参考訳(メタデータ) (2024-12-19T18:59:57Z) - PRTGaussian: Efficient Relighting Using 3D Gaussians with Precomputed Radiance Transfer [13.869132334647771]
PRTGaussianはリアルタイムに再生可能な新規ビュー合成法である。
マルチビューOLATデータにガウスアンを組み込むことで,リアルタイムで自由視点のリライトを可能にする。
論文 参考訳(メタデータ) (2024-08-10T20:57:38Z) - SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting [44.42317312908314]
3D Gaussian Splatting (3DGS)は、3D再構成のための有望な技術であり、効率的なトレーニングとレンダリング速度を提供する。
現在の手法では、3DGSのビュー間の一貫性の仮定を満たすために、高度に制御された環境が必要である。
SpotLessSplatsは、トレーニング済みと汎用の機能と頑健な最適化を併用して、過渡的障害を効果的に無視するアプローチである。
論文 参考訳(メタデータ) (2024-06-28T17:07:11Z) - GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis [63.5925701087252]
本稿では,3次元ガウス点の集合を用いて,点光で照らされたシーンを表現する手法を提案する。
Blinn-Phongモデルにインスパイアされた我々の手法は、シーンを周囲、拡散、および特異成分に分解する。
照明条件に依存しない幾何学的情報の分解を容易にするため,新しい二段階最適化に基づくメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-31T13:48:54Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
我々は,遅延シェーディングを用いたガウススプレイティング表現のデカップリングと編集を行うDedeerredGSを紹介する。
定性的かつ定量的な実験は、新しいビューおよび編集タスクにおけるDederredGSの優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-15T01:58:54Z) - BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting [8.380954205255104]
BAD-Gaussianは、不正確なカメラのポーズで、激しい動きをブラインドした画像を処理するための新しいアプローチである。
提案手法は,従来の最先端のデブルーニューラルレンダリング手法と比較して,優れたレンダリング品質を実現する。
論文 参考訳(メタデータ) (2024-03-18T14:43:04Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
本稿では,3次元ガウス表現を用いた3次元ガウス逆レンダリング(GIR)手法を提案する。
最短固有ベクトルを用いて各3次元ガウスの正規性を計算する。
我々は3次元ガウシアン毎に方向対応の放射光を格納し、多重バウンス光輸送を近似するために二次照明をアンタングルするために、効率的なボクセルベースの間接照明追跡方式を採用する。
論文 参考訳(メタデータ) (2023-12-08T16:05:15Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z) - Flexible Techniques for Differentiable Rendering with 3D Gaussians [29.602516169951556]
ニューラル・ラディアンス・フィールズ(Neural Radiance Fields)は、フォトリアリスティック・ノベルビューが到達範囲内にあることを示した。
特に3次元水密メッシュと1線当たりのレンダリングによる代替形状表現の拡張を開発した。
これらの再構築は高速で堅牢で、GPUやCPU上で容易に実行できる。
論文 参考訳(メタデータ) (2023-08-28T17:38:31Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
1枚の画像からアルベド, 正常, 深さ, 3次元の空間的変化を共同で推定する問題に対処する。
既存のほとんどの方法は、シーンの3D特性を無視して、画像から画像への変換としてタスクを定式化する。
本研究では3次元空間変動照明を定式化する統合学習ベースの逆フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-13T15:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。