論文の概要: A Universal Flexible Near-sensor Neuromorphic Tactile System with Multi-threshold strategy for Pressure Characteristic Detection
- arxiv url: http://arxiv.org/abs/2408.05846v2
- Date: Tue, 13 Aug 2024 14:33:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 14:16:02.817721
- Title: A Universal Flexible Near-sensor Neuromorphic Tactile System with Multi-threshold strategy for Pressure Characteristic Detection
- Title(参考訳): 圧力検出のためのマルチ閾値戦略を用いたユニバーサルフレキシブルニアセンサニューロモルフィック触覚システム
- Authors: Jialin Liu, Diansheng Liao,
- Abstract要約: 完全フレキシブル・ニューロモルフィック・触覚認識システムについて報告する。
システム内の信号はパルスとして送信され、しきい値情報として処理される。
本システムは,シンボルパターンやモース符号の認識において,これらの信号の傾向を正確に出力することができ,精度が高い。
- 参考スコア(独自算出の注目度): 2.4151287776241768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constructing the new generation information processing system by mimicking biological nervous system is a feasible way for implement of high-efficient intelligent sensing device and bionic robot. However, most biological nervous system, especially the tactile system, have various powerful functions. This is a big challenge for bionic system design. Here we report a universal fully flexible neuromorphic tactile perception system with strong compatibility and a multithreshold signal processing strategy. Like nervous system, signal in our system is transmitted as pulses and processed as threshold information. For feasibility verification, recognition of three different type pressure signals (continuous changing signal, Morse code signal and symbol pattern) is tested respectively. Our system can output trend of these signals accurately and have a high accuracy in the recognition of symbol pattern and Morse code. Comparing to conventional system, consumption of our system significantly decreases in a same recognition task. Meanwhile, we give the detail introduction and demonstration of our system universality.
- Abstract(参考訳): 生体神経系を模倣して新しい世代情報処理システムを構築することは、高能率インテリジェントセンシングデバイスとバイオニックロボットを実装するための実現可能な方法である。
しかし、ほとんどの生物学的神経系、特に触覚系は様々な強力な機能を持っている。
これは、バイオニックシステム設計における大きな課題である。
本稿では,強い互換性とマルチスレッショルド信号処理戦略を備えた,広汎でフレキシブルなニューロモルフィックな触覚認識システムについて報告する。
神経系と同様に、我々の系内の信号はパルスとして送信され、閾値情報として処理される。
実現可能性検証には、3種類の異なる圧力信号(連続変化信号、モールス符号信号、シンボルパターン)をそれぞれ認識する。
本システムは,シンボルパターンやモース符号の認識において,これらの信号の傾向を正確に出力することができ,精度が高い。
従来のシステムと比較して,同一の認識タスクにおいて,システム消費は著しく減少する。
一方,システムの普遍性について,より詳細な紹介と実演を行う。
関連論文リスト
- Digitizing Touch with an Artificial Multimodal Fingertip [51.7029315337739]
人間とロボットはどちらも、周囲の環境を知覚し、相互作用するためにタッチを使うことの恩恵を受ける。
ここでは、タッチのデジタル化を改善するための概念的および技術革新について述べる。
これらの進歩は、高度なセンシング機能を備えた人工指型センサーに具現化されている。
論文 参考訳(メタデータ) (2024-11-04T18:38:50Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
本システムでは, コンデンサセンサからの信号を手の動き認識器に組み込んだ手動作認識システムを提案する。
コントローラは、着用者5本の指それぞれからリアルタイム信号を生成する。
機械学習技術を用いて時系列信号を解析し,500ms以内で5本の指を表現できる3つの特徴を同定する。
論文 参考訳(メタデータ) (2023-05-12T17:24:02Z) - Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining [24.641328814546842]
本稿では、フーリエ領域におけるマスク付き自己エンコーディングに基づく神経信号の自己教師付き事前学習フレームワークであるNeuro-BERTを提案する。
本稿では、入力信号の一部をランダムにマスキングし、欠落した情報を予測するFourier Inversion Prediction (FIP)と呼ばれる新しい事前学習タスクを提案する。
提案手法をいくつかのベンチマークデータセットで評価することにより,Neuro-BERTは下流神経関連タスクを大きなマージンで改善することを示す。
論文 参考訳(メタデータ) (2022-04-20T16:48:18Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Improving Coherence and Consistency in Neural Sequence Models with
Dual-System, Neuro-Symbolic Reasoning [49.6928533575956]
我々は、神経系1と論理系2の間を仲介するために神経推論を用いる。
強靭なストーリー生成とグラウンドド・インストラクション・フォローリングの結果、このアプローチは神経系世代におけるコヒーレンスと精度を高めることができることを示した。
論文 参考訳(メタデータ) (2021-07-06T17:59:49Z) - Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting [11.771843031752269]
本稿では,間接的に観測された動的システムの潜在表現を学習するための汎用的かつスケーラブルな手法を提案する。
生画像から直接観察されたシステム上での最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-06-22T12:30:18Z) - Gesture Similarity Analysis on Event Data Using a Hybrid Guided
Variational Auto Encoder [3.1148846501645084]
本研究では,背景を自然分解し,時間分解能の高いジェスチャーを解析するニューロモーフィックジェスチャー解析システムを提案する。
以上の結果から,VAEが学習した特徴は,新しいジェスチャーのクラスタリングと擬似ラベル付けが可能な類似度尺度を提供することがわかった。
論文 参考訳(メタデータ) (2021-03-31T23:58:34Z) - A Signal-Centric Perspective on the Evolution of Symbolic Communication [4.447467536572625]
我々は、生物が独自の解釈可能な意味を持つ共有シンボルセットを定義するためにどのように進化するかを示す。
信号の復号化は,信号振幅が制限され,信号の復号化や分類が可能である。
各種設定において,シンボルの辞書を共有するように進化するエージェントを観察し,各シンボルが1次元のユニークな信号に自然に関連付けられている。
論文 参考訳(メタデータ) (2021-03-31T08:05:01Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。