Experimental realization of entanglement between two Brownian particles
- URL: http://arxiv.org/abs/2408.06708v1
- Date: Tue, 13 Aug 2024 08:07:32 GMT
- Title: Experimental realization of entanglement between two Brownian particles
- Authors: Lakshmanan Theerthagiri, Sergio Ciliberto,
- Abstract summary: Uncertainty relations between coordinates and coarse-grained velocity can produce a phenomenon similar to quantum entanglement.
The interconnected particles exhibit Brownian quantum-inspired classical correlation entanglement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We experimentally investigate the statistical properties of the quantum analog of entanglement between two electric circuits equivalent to two Brownian particles connected by an elastic force and maintained at different temperatures through separate heat reservoirs. Uncertainty relations between coordinates and coarse-grained velocity can produce a phenomenon similar to quantum entanglement, where temperature plays the role of Planck's constant. The theoretical analysis matches the experimental results, confirming that the interconnected particles exhibit Brownian quantum-inspired classical correlation entanglement. This effect arises from a coarse grained description of Brownian motion and vanishes at a finer resolution. {The coarsening scales range is measured too.
Related papers
- Decoherence of spin superposition state caused by a quantum electromagnetic field [0.0]
In this study, we investigate the decoherence of a spatially superposed electrically neutral spin-$frac12$ particle in the presence of a quantum electromagnetic field in Minkowski spacetime.
We demonstrate that decoherence due to the spin-magnetic field coupling can be categorized into two distinct factors: local decoherence, originating from the two-point correlation functions along each branch of the superposed trajectories, and nonlocal decoherence, which arises from the correlation functions between the two superposed trajectories.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Production and stabilization of a spin mixture of ultracold dipolar Bose gases [39.58317527488534]
We present experimental results for a mixture composed of the two lowest Zeeman states of $162$Dy atoms.
Due to an interference phenomenon, the rate for such inelastic processes is dramatically reduced with respect to the Wigner threshold law.
arXiv Detail & Related papers (2024-07-11T17:37:01Z) - Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Decoherence of a charged Brownian particle in a magnetic field : an analysis of the roles of coupling via position and momentum variables [0.0]
We study the dynamics of a harmonically oscillating charged Brownian particle coupled to an Ohmic heat bath via both position and momentum couplings.
The presence of both position and momentum couplings leads to a stronger interaction with the environment, resulting in a faster loss of coherence.
In addition, the magnetic field results in the slowing down of the loss of information from the system, irrespective of the nature of coupling between the system and the bath.
arXiv Detail & Related papers (2024-04-22T05:10:02Z) - Brownian Particles and Matter Waves [0.0]
We examine whether Brownian particles can manifest a particle-wave duality without employing a priori arguments from quantum decoherence.
Our one-dimensional calculations show that for this to happen, the trapping needs to be very strong so that a Brownian nanoparticles needs to be embedded in an extremely stiff solid.
arXiv Detail & Related papers (2024-04-02T15:01:14Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.