論文の概要: Conference Submission and Review Policies to Foster Responsible Computing Research
- arxiv url: http://arxiv.org/abs/2408.09678v1
- Date: Mon, 19 Aug 2024 03:35:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:44:03.249934
- Title: Conference Submission and Review Policies to Foster Responsible Computing Research
- Title(参考訳): 責任あるコンピューティング研究を育成するための会議の提出とレビュー
- Authors: Lorrie Cranor, Kim Hazelwood, Daniel Lopresti, Amanda Stent,
- Abstract要約: CRA Working Group on Socially Responsible Computingは、コンピューティング会議における倫理的および責任ある研究プラクティスに関するガイドラインを概説している。
報告書は、会議主催者が責任あるコンピューティング研究と出版を保証するために明確なポリシーを採用する必要性を強調している。
- 参考スコア(独自算出の注目度): 1.7970005752161735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report by the CRA Working Group on Socially Responsible Computing outlines guidelines for ethical and responsible research practices in computing conferences. Key areas include avoiding harm, responsible vulnerability disclosure, ethics board review, obtaining consent, accurate reporting, managing financial conflicts of interest, and the use of generative AI. The report emphasizes the need for conference organizers to adopt clear policies to ensure responsible computing research and publication, highlighting the evolving nature of these guidelines as understanding and practices in the field advance.
- Abstract(参考訳): CRA Working Group on Socially Responsible Computingの報告は、コンピューティング会議における倫理的および責任ある研究実践に関するガイドラインを概説している。
主な分野は、害の回避、責任のある脆弱性の開示、倫理委員会レビュー、同意獲得、正確な報告、利害の金銭的衝突の管理、生成的AIの使用である。
報告書は、会議主催者が、責任あるコンピューティング研究と出版を保証するための明確なポリシーを採用する必要性を強調し、これらのガイドラインの進化する性質を、現場における理解と実践として強調している。
関連論文リスト
- Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
私たちは、責任あるAIコミュニティがほとんど見落としている共通のNLPタスクである、テキスト要約に重点を置いています。
我々は,2020-2022年に出版されたACLアンソロジーから333の要約論文の多段階的質的分析を行った。
私たちは、どの、どの、どの責任あるAI問題がカバーされているか、どの関係するステークホルダーが考慮されているか、そして、述べられた研究目標と実現された研究目標のミスマッチに焦点を合わせます。
論文 参考訳(メタデータ) (2023-11-18T15:35:36Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
本報告では、生成AIと法に関する第1回ワークショップ(GenLaw)の開催状況について述べる。
コンピュータサイエンスと法学の実践者や学者の学際的なグループが集まり、ジェネレーティブAI法がもたらす技術的、教義的、政策上の課題について議論した。
論文 参考訳(メタデータ) (2023-11-11T04:13:37Z) - The Participatory Turn in AI Design: Theoretical Foundations and the
Current State of Practice [64.29355073494125]
本稿は、既存の理論文献を合成して、AI設計における「参加的転換」を掘り下げることを目的としている。
我々は、最近発表された研究および12人のAI研究者および実践者に対する半構造化インタビューの分析に基づいて、AI設計における参加実践の現状に関する実証的な知見を述べる。
論文 参考訳(メタデータ) (2023-10-02T05:30:42Z) - Ethical Considerations and Policy Implications for Large Language
Models: Guiding Responsible Development and Deployment [48.72819550642584]
本稿では,コンテンツ生成における大規模言語モデル(LLM)の倫理的考察と意義について考察する。
生成AIプログラムの肯定的および否定的な使用の可能性を強調し、アウトプットに責任を割り当てる際の課題を探求する。
論文 参考訳(メタデータ) (2023-08-01T07:21:25Z) - Explainability in AI Policies: A Critical Review of Communications,
Reports, Regulations, and Standards in the EU, US, and UK [1.5039745292757671]
我々は、EU、米国、英国における説明可能性に関する政策と標準に関する最初のテーマとギャップの分析を行う。
政策は、しばしば説明のための粗い概念と要求によって知らされる。
本稿では,AIシステムの規則における説明可能性への対処法を提案する。
論文 参考訳(メタデータ) (2023-04-20T07:53:07Z) - The Equitable AI Research Roundtable (EARR): Towards Community-Based
Decision Making in Responsible AI Development [4.1986677342209004]
The Equitable AI Research Roundtableの最初の評価について報告する。
EARRは、大手テック企業、非営利団体、NGO研究機関、大学と共同で設立された。
FAccTコミュニティの懸念に特に関係するEARRの運用方法に関する3つの原則を概説する。
論文 参考訳(メタデータ) (2023-03-14T18:57:20Z) - The right to audit and power asymmetries in algorithm auditing [68.8204255655161]
IC2S2 2021でSandvig氏が言及した課題と漸近について詳しく説明する。
また、Sandvigがカバーしていない非対称性の議論にも貢献する。
本稿では,これらの非対称性がアルゴリズム監査研究に与える影響について論じる。
論文 参考訳(メタデータ) (2023-02-16T13:57:41Z) - Ethical Assurance: A practical approach to the responsible design,
development, and deployment of data-driven technologies [0.0]
この記事では、データサイエンスとAIにおける責任ある研究とイノベーションに関する学際的プロジェクトへのコントリビューションを提供する。
まず、アルゴリズム評価の実践的なメカニズムを確立するための現在の取り組みについて批判的な分析を行う。
第二に、議論に基づく保証の方法論へのアクセシビリティな導入を提供する。
第3に,我々は「倫理的保証」と呼ぶ,議論に基づく保証の新たなバージョンを確立する。
論文 参考訳(メタデータ) (2021-10-11T11:21:49Z) - Accountability in AI: From Principles to Industry-specific Accreditation [4.033641609534416]
最近のAI関連のスキャンダルは、AIのアカウンタビリティに注目を向けている。
本稿では2つの貢献をするために公共政策とガバナンスから文献を引用する。
論文 参考訳(メタデータ) (2021-10-08T16:37:11Z) - Making Responsible AI the Norm rather than the Exception [0.0]
この報告書は、国家安全保障委員会(National Security Commission on Artificial Intelligence, NSCAI)に対する勧告である。
報告書は、責任あるAIは例外ではなくノルムを作るべきだという考えを中心にしている。
フレームワークは,(1)学習,知識,情報交換(LKIE),(2)責任AIの3つの方法,(3)経験的に駆動されるリスク優先化行列,(4)適切な複雑性レベルを達成することから構成される。
論文 参考訳(メタデータ) (2021-01-28T06:39:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。