論文の概要: MagicDec: Breaking the Latency-Throughput Tradeoff for Long Context Generation with Speculative Decoding
- arxiv url: http://arxiv.org/abs/2408.11049v2
- Date: Wed, 21 Aug 2024 17:55:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-22 12:07:24.904372
- Title: MagicDec: Breaking the Latency-Throughput Tradeoff for Long Context Generation with Speculative Decoding
- Title(参考訳): MagicDec: 投機的復号化による長期コンテキスト生成のためのレイテンシ・スループトレードオフを破る
- Authors: Jian Chen, Vashisth Tiwari, Ranajoy Sadhukhan, Zhuoming Chen, Jinyuan Shi, Ian En-Hsu Yen, Beidi Chen,
- Abstract要約: LLM(Large Language Models)は、長いコンテキストのアプリケーションで広く使われるようになった。
投機的復号法(SD)は、性能を犠牲にすることなくレイテンシを低減する手法として広く用いられている。
我々は,中間列から長列の高スループット推論方式であっても,驚くほどSDが高速化可能であることを示す。
- 参考スコア(独自算出の注目度): 11.030853173032199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have become more prevalent in long-context applications such as interactive chatbots, document analysis, and agent workflows, but it is challenging to serve long-context requests with low latency and high throughput. Speculative decoding (SD) is a widely used technique to reduce latency without sacrificing performance but the conventional wisdom suggests that its efficacy is limited to small batch sizes. In MagicDec, we show that surprisingly SD can achieve speedup even for a high throughput inference regime for moderate to long sequences. More interestingly, an intelligent drafting strategy can achieve better speedup with increasing batch size based on our rigorous analysis. MagicDec first identifies the bottleneck shifts with increasing batch size and sequence length, and uses these insights to deploy speculative decoding more effectively for high throughput inference. Then, it leverages draft models with sparse KV cache to address the KV bottleneck that scales with both sequence length and batch size. This finding underscores the broad applicability of speculative decoding in long-context serving, as it can enhance throughput and reduce latency without compromising accuracy. For moderate to long sequences, we demonstrate up to 2x speedup for LLaMA-2-7B-32K and 1.84x speedup for LLaMA-3.1-8B when serving batch sizes ranging from 32 to 256 on 8 NVIDIA A100 GPUs. The code is available at https://github.com/Infini-AI-Lab/MagicDec/.
- Abstract(参考訳): 大きな言語モデル(LLM)は、対話型チャットボット、ドキュメント分析、エージェントワークフローといった長文アプリケーションでは一般的になっていますが、低レイテンシと高スループットで長文リクエストを提供するのは難しいです。
投機的復号法(SD)は、性能を犠牲にすることなくレイテンシを低減する手法として広く用いられているが、従来の知恵は、その有効性は小さなバッチサイズに限定されていることを示唆している。
MagicDecでは、中間列から長列への高スループット推論でも驚くほどSDが高速化できることが示されている。
より興味深いことに、インテリジェントなドラフト戦略は、厳密な分析に基づいてバッチサイズを増やすことで、より良いスピードアップを達成することができます。
MagicDecはまず、バッチサイズとシーケンス長の増加に伴うボトルネックシフトを特定し、これらの洞察を使用して、高いスループット推論のために投機的デコーディングをより効果的にデプロイする。
次に、スパースKVキャッシュを備えたドラフトモデルを活用して、シーケンス長とバッチサイズの両方でスケールするKVボトルネックに対処する。
この発見は、スループットを向上し、精度を損なうことなくレイテンシを低減することができるため、長期コンテキストサービスにおける投機的復号化の幅広い適用性を示している。
LLaMA-2-7B-32Kは最大2倍、LLaMA-3.1-8Bは最大1.84倍、NVIDIA A100 GPUは32から256までのバッチサイズを提供する。
コードはhttps://github.com/Infini-AI-Lab/MagicDec/で公開されている。
関連論文リスト
- SPIRe: Boosting LLM Inference Throughput with Speculative Decoding [5.738617783286307]
投機的復号法(SD)は、小さなバッチサイズで自己回帰復号法(AD)の2~3倍の遅延を減少させることが示されている。
最近の研究は、SDがコンテキストが十分に長く、ドラフトモデルのKVキャッシュが不足している場合、大きなバッチサイズでデコーディングを高速化できることを示している。
論文 参考訳(メタデータ) (2025-04-08T20:39:20Z) - DuoDecoding: Hardware-aware Heterogeneous Speculative Decoding with Dynamic Multi-Sequence Drafting [59.57151419673759]
投機的復号化は、出力分布の忠実さを維持しながら生成遅延を低減するドラフト・then-verifyフレームワークを提供する。
我々は、CPUとGPUにそれぞれドラフトモデルとターゲットモデルを戦略的にデプロイする新しいアプローチであるDuoDecodingを提案する。
本手法は,アイドル時間を最小限に抑えるため,ハードウェア対応の最適ドラフト予算を組み込んで,動的マルチシーケンスドラフトを用いて,ドラフト品質を向上させる。
論文 参考訳(メタデータ) (2025-03-02T08:27:48Z) - LongSpec: Long-Context Speculative Decoding with Efficient Drafting and Verification [42.54363549922909]
投機的復号化は、大規模言語モデルにおける自己回帰復号化の高推論遅延を軽減するための有望な手法となっている。
その約束にもかかわらず、LLMにおける投機的復号化の効果的な適用は、まだ3つの重要な課題に直面している。
これらの課題に対処することで、長期コンテキスト設定における投機的復号化の性能を向上させる。
論文 参考訳(メタデータ) (2025-02-24T18:53:31Z) - LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention [26.54297116028556]
大規模言語モデル(LLM)は、長いシーケンスや複雑な推論タスクの処理において顕著な可能性を示している。
LServeは,ハイブリッドスパースアテンションにより長周期LLMサービスを高速化する,効率的なシステムである。
LServeはLLMプリフィルを最大2.9倍加速し、vLLMで1.3-2.1倍デコードする。
論文 参考訳(メタデータ) (2025-02-20T18:59:52Z) - QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache [67.84112700032007]
大きな言語モデル(LLM)は、長いコンテキスト設定のためにエッジデバイスにデプロイされることが増えている。
これらのシナリオでは、キーバリュー(KV)キャッシュがGPUメモリとレイテンシの両方において主要なボトルネックとなっている。
そこで本研究では,ターゲットモデルのアーキテクチャを共有するが,階層的な4ビット量子化KVキャッシュと4ビット量子化重みを併用して高速化を行う,新たな自己推論型デコーディングフレームワークであるQuantSpecを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:43:48Z) - SparseAccelerate: Efficient Long-Context Inference for Mid-Range GPUs [0.0]
SparseAccelerateは動的スパースアテンション手法であり、入力特性に基づいてその疎度パターンを適応する。
実験結果から,SparseAccelerateは最大1.04倍のTTTF遅延を32Kトークンで達成した。
論文 参考訳(メタデータ) (2024-12-09T04:27:03Z) - Squeezed Attention: Accelerating Long Context Length LLM Inference [64.11145320159126]
本稿では,入力プロンプトの大部分を固定したLLMアプリケーションを高速化する機構として,Squeezed Attentionを提案する。
K-meansクラスタリングをオフラインで使用して、セマンティックな類似性に基づいて、固定されたコンテキストのキーをグループ化し、各クラスタを単一のセントロイド値で表現します。
そして、固定された文脈から重要なキーのみを用いて正確な注意を計算し、帯域幅と計算コストを削減する。
論文 参考訳(メタデータ) (2024-11-14T18:54:19Z) - SSSD: Simply-Scalable Speculative Decoding [4.613725465729454]
投機的復号化は、大規模言語モデル推論を加速させる技術として人気を集めている。
我々は,より大規模なバッチサイズで投機的復号化を効果的に活用する方法を理論的に説明する。
論文 参考訳(メタデータ) (2024-11-08T14:23:02Z) - ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference [25.638980944695728]
ShadowKVは、LLM(Long-Context Large Language Model)推論システムである。
低ランクのキーキャッシュを格納し、バリューキャッシュをオフロードすることで、より大きなバッチサイズと長いシーケンスのためにメモリフットプリントを削減する。
最大6$times$大きなバッチサイズをサポートし、A100 GPUで最大3.04$times$までスループットを向上できる。
論文 参考訳(メタデータ) (2024-10-28T19:08:12Z) - MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models [58.3342517278868]
本稿では,Mixed-precision AutoRegressive LINearカーネルの設計について述べる。
バッチサイズは16-32までサポートでき、量子化のスピードアップが最大 (4times$) になる。
MarLINは非同期メモリアクセス、複雑なタスクスケジューリング、パイプライン化といったテクニックを組み合わせてこれを実現している。
論文 参考訳(メタデータ) (2024-08-21T16:10:41Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
論文 参考訳(メタデータ) (2024-07-22T14:37:58Z) - MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention [36.49445805074941]
Minference (Milliontokens Inference) は長周期処理の前処理を高速化するスパース計算法である。
我々は,MInferenceが精度を維持しつつ,A100にプリフィルする際の推論遅延を最大10倍に効果的に低減できることを実証した。
論文 参考訳(メタデータ) (2024-07-02T17:59:56Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - Bifurcated Attention: Accelerating Massively Parallel Decoding with Shared Prefixes in LLMs [39.16152482491236]
Bifurcated attentionは、共有コンテキストバッチデコードシナリオにおける言語モデル推論を強化するために設計された手法である。
提案手法は,高バッチサイズおよび拡張コンテキスト長のレイテンシに寄与する重要な要因である冗長メモリIOコストの課題に対処する。
論文 参考訳(メタデータ) (2024-03-13T16:30:57Z) - Break the Sequential Dependency of LLM Inference Using Lookahead
Decoding [27.87483106859749]
Lookahead decodingは、大規模言語モデル(LLM)のための正確な並列デコーディングアルゴリズムである。
実装により,MT-benchでは1.8倍,コード補完タスクでは4倍まで高速に自動回帰復号を行うことができる。
論文 参考訳(メタデータ) (2024-02-03T06:37:50Z) - DISTFLASHATTN: Distributed Memory-efficient Attention for Long-context LLMs Training [82.06732962485754]
FlashAttentionは、1つのGPU上でのトレーニングトランスフォーマーベースの大規模言語モデル(LLM)において、2次ピークメモリの使用を線形に削減する。
本研究では,長期LLM学習に最適化されたメモリ効率の高い注意機構であるDisTFLASHATTNを紹介する。
最近のRing AttentionやDeepSpeed-Ulyssesと比較して、1.67xと1.26 - 1.88xのスピードアップを実現している。
論文 参考訳(メタデータ) (2023-10-05T03:47:57Z) - LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models [83.98062659664785]
大規模言語モデル(LLM)は通常、トランスフォーマーアーキテクチャの2次複雑さのために短いテキストセグメント(例:4Kトークン)でトレーニングする。
この研究は、この長大一般化失敗に寄与する3つの主要な要因を特定する。
本研究では,LLMの長期処理能力を高めるための簡易かつ効果的な手法であるLM-Infiniteを提案する。
論文 参考訳(メタデータ) (2023-08-30T16:47:51Z) - Practical Conformer: Optimizing size, speed and flops of Conformer for
on-Device and cloud ASR [67.63332492134332]
我々は、デバイス上の制約を満たすのに十分小さく、TPUを高速に推論できる最適化されたコンバータを設計する。
提案するエンコーダは、デバイス上では強力なスタンドアロンエンコーダとして、また高性能なASRパイプラインの第1部として利用することができる。
論文 参考訳(メタデータ) (2023-03-31T23:30:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。