NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
- URL: http://arxiv.org/abs/2408.16355v2
- Date: Wed, 11 Jun 2025 08:37:43 GMT
- Title: NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
- Authors: Kirsten W. H. Maas, Danny Ruijters, Anna Vilanova, Nicola Pezzotti,
- Abstract summary: Existing CA reconstruction methods often require extensive user interaction or large training datasets.<n>NeRF has successfully reconstructed high-fidelity scenes in natural and medical contexts without these requirements.<n>We introduce NeRF-CA, a first step toward a fully automatic 4D CA reconstruction that achieves reconstructions from sparse coronary angiograms.
- Score: 1.1999555634662633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic three-dimensional (4D) reconstruction from two-dimensional X-ray coronary angiography (CA) remains a significant clinical problem. Existing CA reconstruction methods often require extensive user interaction or large training datasets. Recently, Neural Radiance Field (NeRF) has successfully reconstructed high-fidelity scenes in natural and medical contexts without these requirements. However, challenges such as sparse-views, intra-scan motion, and complex vessel morphology hinder its direct application to CA data. We introduce NeRF-CA, a first step toward a fully automatic 4D CA reconstruction that achieves reconstructions from sparse coronary angiograms. To the best of our knowledge, we are the first to address the challenges of sparse-views and cardiac motion by decoupling the scene into the moving coronary artery and the static background, effectively translating the problem of motion into a strength. NeRF-CA serves as a first stepping stone for solving the 4D CA reconstruction problem, achieving adequate 4D reconstructions from as few as four angiograms, as required by clinical practice, while significantly outperforming state-of-the-art sparse-view X-ray NeRF. We validate our approach quantitatively and qualitatively using representative 4D phantom datasets and ablation studies. To accelerate research in this domain, we made our codebase public: https://github.com/kirstenmaas/NeRF-CA.
Related papers
- NerT-CA: Efficient Dynamic Reconstruction from Sparse-view X-ray Coronary Angiography [1.1999555634662633]
Three-dimensional (3D) and dynamic 3D+time (4D) reconstruction of coronary arteries from X-ray coronary angiography (CA) has the potential to improve clinical procedures.<n>There are challenges to be addressed, most notably, blood-vessel structure sparsity, poor background and blood vessel distinction, sparse-views, and intra-scan motion.<n>We propose NerT-CA, a hybrid approach of Neural andial representations for accelerated 4D reconstructions with sparse-view CA.
arXiv Detail & Related papers (2025-07-25T14:38:33Z) - High-Fidelity Functional Ultrasound Reconstruction via A Visual Auto-Regressive Framework [58.07923338080814]
Functional neurotemporal imaging provides exceptional resolution for mapping.<n>However, its practical application is hampered by critical challenges.<n>These include data scarcity, ethical considerations and signal degradation.
arXiv Detail & Related papers (2025-05-23T15:27:17Z) - Nonperiodic dynamic CT reconstruction using backward-warping INR with regularization of diffeomorphism (BIRD) [9.894794660436693]
This paper presents a novel INR-based framework, BIRD, for nonperiodic dynamic CT reconstruction.<n>It addresses these challenges through four key contributions: backward-warping deformation, motion-compensated analytical reconstruction, and dimensional-reduction design for efficient 4D coordinate encoding.<n>The framework enables more accurate dynamic CT reconstruction with potential clinical applications, such as one-beat cardiac reconstruction, cinematic image sequences for functional imaging, and motion artifact reduction in conventional CT scans.
arXiv Detail & Related papers (2025-05-06T12:01:40Z) - X$^{2}$-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction [45.31051025401413]
X$2$-Gaussian is a novel framework for continuous-time 4DCT reconstruction.
It integrates dynamic radiative splatting with self-supervised respiratory motion learning.
It achieves a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior splatting techniques.
arXiv Detail & Related papers (2025-03-27T17:59:57Z) - TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
Traditional analytical/iterative CT reconstruction algorithms require hundreds of angular data samplings.
We develop a novel TomoGRAF framework incorporating the unique X-ray transportation physics to reconstruct high-quality 3D volumes.
arXiv Detail & Related papers (2024-11-12T20:07:59Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - DeepCA: Deep Learning-based 3D Coronary Artery Tree Reconstruction from Two 2D Non-simultaneous X-ray Angiography Projections [1.9929038355503754]
Cardiovascular diseases (CVDs) are the most common cause of death worldwide.<n>Invasive x-ray coronary angiography (ICA) is one of the most important imaging modalities for the diagnosis of CVDs.<n>ICA typically acquires only two 2D projections, which makes the 3D geometry of coronary vessels difficult to interpret.<n>We propose a novel deep learning pipeline named emphDeepCA to correct the non-rigid cardiac and respiratory motions between non-simultaneous projections.
arXiv Detail & Related papers (2024-07-19T18:18:17Z) - HFGS: 4D Gaussian Splatting with Emphasis on Spatial and Temporal High-Frequency Components for Endoscopic Scene Reconstruction [13.012536387221669]
Robot-assisted minimally invasive surgery benefits from enhancing dynamic scene reconstruction, as it improves surgical outcomes.
NeRF have been effective in scene reconstruction, but their slow inference speeds and lengthy training durations limit their applicability.
3D Gaussian Splatting (3D-GS) based methods have emerged as a recent trend, offering rapid inference capabilities and superior 3D quality.
In this paper, we propose HFGS, a novel approach for deformable endoscopic reconstruction that addresses these challenges from spatial and temporal frequency perspectives.
arXiv Detail & Related papers (2024-05-28T06:48:02Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
Current commercial Digital Subtraction Angiography (DSA) systems typically demand hundreds of scanning views to perform reconstruction.
The dynamic blood flow and insufficient input of sparse-view DSA images present significant challenges to the 3D vessel reconstruction task.
We propose to use a time-agnostic vessel probability field to solve this problem effectively.
arXiv Detail & Related papers (2024-05-17T11:23:33Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
We propose SNAF for sparse-view CBCT reconstruction by learning the neural attenuation fields.
Our approach achieves superior performance in terms of high reconstruction quality (30+ PSNR) with only 20 input views.
arXiv Detail & Related papers (2022-11-30T14:51:14Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
We propose a novel deep-learning-based approach that directly predicts whole heart surface meshes from volumetric CT and MR image data.
Our method demonstrated promising performance of generating high-resolution and high-quality whole heart reconstructions.
arXiv Detail & Related papers (2021-02-16T00:39:43Z) - Limited View Tomographic Reconstruction Using a Deep Recurrent Framework
with Residual Dense Spatial-Channel Attention Network and Sinogram
Consistency [25.16002539710169]
We propose a novel recurrent reconstruction framework that stacks the same block multiple times.
We develop a sinogram consistency layer interleaved in our recurrent framework to ensure that the sampled sinogram is consistent with the sinogram of the intermediate outputs of the recurrent blocks.
Our algorithm achieves a consistent and significant improvement over the existing state-of-the-art neural methods on both limited angle reconstruction and sparse view reconstruction.
arXiv Detail & Related papers (2020-09-03T16:39:48Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Weakly-supervised 3D coronary artery reconstruction from two-view
angiographic images [4.722039838364292]
We propose an adversarial and generative way to reconstruct three dimensional coronary artery models.
With 3D fully supervised learning and 2D weakly supervised learning schemes, we obtained reconstruction accuracies that outperform state-of-art techniques.
arXiv Detail & Related papers (2020-03-26T11:41:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.