論文の概要: DeepSPoC: A Deep Learning-Based PDE Solver Governed by Sequential Propagation of Chaos
- arxiv url: http://arxiv.org/abs/2408.16403v1
- Date: Thu, 29 Aug 2024 10:02:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 14:12:45.233702
- Title: DeepSPoC: A Deep Learning-Based PDE Solver Governed by Sequential Propagation of Chaos
- Title(参考訳): DeepSPoC: カオスの逐次伝播によるディープラーニングベースのPDEソリューション
- Authors: Kai Du, Yongle Xie, Tao Zhou, Yuancheng Zhou,
- Abstract要約: カオスの逐次伝播(SPoC)は,最近開発された平均場微分方程式の解法である。
本稿では,SPoCの相互作用粒子系と深層学習を組み合わせた新しい手法(deepSPoC)を提案する。
高次元問題に対しては、深部SPoCの精度と効率をさらに向上するために空間適応法が設計されている。
- 参考スコア(独自算出の注目度): 7.808454074695533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential propagation of chaos (SPoC) is a recently developed tool to solve mean-field stochastic differential equations and their related nonlinear Fokker-Planck equations. Based on the theory of SPoC, we present a new method (deepSPoC) that combines the interacting particle system of SPoC and deep learning. Under the framework of deepSPoC, two classes of frequently used deep models include fully connected neural networks and normalizing flows are considered. For high-dimensional problems, spatial adaptive method are designed to further improve the accuracy and efficiency of deepSPoC. We analysis the convergence of the framework of deepSPoC under some simplified conditions and also provide a posterior error estimation for the algorithm. Finally, we test our methods on a wide range of different types of mean-field equations.
- Abstract(参考訳): カオスの逐次伝播(SPoC)は、平均場確率微分方程式とその関連する非線形フォッカー・プランク方程式を解くために最近開発されたツールである。
SPoCの理論に基づいて,SPoCの相互作用粒子系と深層学習を組み合わせた新しい手法(deepSPoC)を提案する。
DeepSPoCの枠組みの下では、よく使われるディープモデルの2つのクラスは、完全に接続されたニューラルネットワークと正規化フローを含む。
高次元問題に対しては、深部SPoCの精度と効率をより高めるために空間適応法が設計されている。
我々は,いくつかの簡易な条件下でのディープSPoCのフレームワークの収束を解析し,アルゴリズムの後方誤差推定を提供する。
最後に,この手法を様々な種類の平均場方程式で検証する。
関連論文リスト
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Deep learning numerical methods for high-dimensional fully nonlinear
PIDEs and coupled FBSDEs with jumps [26.28912742740653]
高次元放物型積分微分方程式(PIDE)を解くためのディープラーニングアルゴリズムを提案する。
ジャンプ拡散過程はブラウン運動と独立補償ポアソンランダム測度によって導出される。
この深層学習アルゴリズムの誤差推定を導出するために,マルコビアンの収束,オイラー時間離散化の誤差境界,および深層学習アルゴリズムのシミュレーション誤差について検討した。
論文 参考訳(メタデータ) (2023-01-30T13:55:42Z) - $r-$Adaptive Deep Learning Method for Solving Partial Differential
Equations [0.685316573653194]
本稿では,Deep Neural Network を用いて部分微分方程式を解くための$r-$adaptiveアルゴリズムを提案する。
提案手法は, テンソル積メッシュに制限され, 境界ノードの位置を1次元で最適化し, そこから2次元または3次元メッシュを構築する。
論文 参考訳(メタデータ) (2022-10-19T21:38:46Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
パラメーター対解写像の効率的な近似法として,Deep Neural Networks に基づく構築的アプローチを開発した。
特に, パラメタライズド・アドベクション拡散PDEについて検討し, 強輸送場の存在下で方法論を検証した。
論文 参考訳(メタデータ) (2021-03-10T17:01:42Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
本研究は,流体力学系の最適化と制御を支援するための深部強化学習(DRL)技術の能力を評価する。
原型ポリシー最適化(PPO)アルゴリズムの新たな"退化"バージョンを組み合わせることで、学習エピソード当たり1回だけシステムを最適化するニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-06-04T16:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。