論文の概要: AQ-PINNs: Attention-Enhanced Quantum Physics-Informed Neural Networks for Carbon-Efficient Climate Modeling
- arxiv url: http://arxiv.org/abs/2409.01626v1
- Date: Tue, 3 Sep 2024 05:52:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 02:43:06.884252
- Title: AQ-PINNs: Attention-Enhanced Quantum Physics-Informed Neural Networks for Carbon-Efficient Climate Modeling
- Title(参考訳): AQ-PINN:炭素効率気候モデリングのための注意力強化量子物理学インフォームドニューラルネットワーク
- Authors: Siddhant Dutta, Nouhaila Innan, Sadok Ben Yahia, Muhammad Shafique,
- Abstract要約: 本稿では,これらの課題に対処するための量子物理学情報ニューラルネットワークモデル(AQ-PINN)を提案する。
このアプローチは、気候モデリングのための物理情報ニューラルネットワーク(PINN)に量子コンピューティング技術を統合する。
AQ-PINNは,従来のマルチヘッド自己保持法と比較して,モデルパラメータの51.51%削減を実現している。
- 参考スコア(独自算出の注目度): 6.12923730892552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing computational demands of artificial intelligence (AI) in addressing climate change raise significant concerns about inefficiencies and environmental impact, as highlighted by the Jevons paradox. We propose an attention-enhanced quantum physics-informed neural networks model (AQ-PINNs) to tackle these challenges. This approach integrates quantum computing techniques into physics-informed neural networks (PINNs) for climate modeling, aiming to enhance predictive accuracy in fluid dynamics governed by the Navier-Stokes equations while reducing the computational burden and carbon footprint. By harnessing variational quantum multi-head self-attention mechanisms, our AQ-PINNs achieve a 51.51% reduction in model parameters compared to classical multi-head self-attention methods while maintaining comparable convergence and loss. It also employs quantum tensor networks to enhance representational capacity, which can lead to more efficient gradient computations and reduced susceptibility to barren plateaus. Our AQ-PINNs represent a crucial step towards more sustainable and effective climate modeling solutions.
- Abstract(参考訳): 気候変動に対処する人工知能(AI)の計算需要の増大は、Jevonsパラドックスで強調されているように、非効率性と環境への影響に関する重大な懸念を提起する。
本稿では,これらの課題に対処するための量子物理学情報ニューラルネットワークモデル(AQ-PINN)を提案する。
このアプローチは、計算負担と炭素フットプリントを低減しつつ、Navier-Stokes方程式によって制御される流体力学の予測精度を高めることを目的として、物理情報ニューラルネットワーク(PINN)に量子コンピューティング技術を統合する。
我々のAQ-PINNは、変動型量子多頭部自己保持機構を利用することで、古典的多頭部自己保持法と比較して、モデルパラメータの51.51%削減を実現し、コンバージェンスとロスを同等に維持する。
また、量子テンソルネットワークを用いて表現能力を高め、より効率的な勾配計算とバレンプラトーへの感受性の低下につながる。
我々のAQ-PINNは、より持続的で効果的な気候モデリングソリューションへの重要な一歩である。
関連論文リスト
- Quantum Computing for Climate Resilience and Sustainability Challenges [0.23558144417896584]
気候変動予測と持続可能な開発のための量子機械学習と最適化技術の適用について検討する。
最新の研究と開発を合成することにより、QCと量子機械学習がマルチインフラシステムを気候中立性に最適化する方法について強調する。
論文 参考訳(メタデータ) (2024-07-23T08:54:12Z) - Quantum-Train Long Short-Term Memory: Application on Flood Prediction Problem [0.8192907805418583]
本研究は、量子機械学習(QML)により訓練された予測長短期記憶(LSTM)モデルに量子トレイン(QT)技術を適用した。
QTテクニックは、QHack 2024のA Matter of Tasteチャレンジで最初に成功したもので、トレーニング可能なパラメータの数を古典的ニューラルネットワーク(NN)のパラメータ数の多対数関数に還元するためにQMLを活用する。
提案手法は,量子埋め込みを必要とせずに従来のデータを直接処理し,学習後の量子コンピューティングリソースとは独立に動作させる。
論文 参考訳(メタデータ) (2024-07-11T15:56:00Z) - Q-SNNs: Quantized Spiking Neural Networks [12.719590949933105]
スパイキングニューラルネットワーク(SNN)はスパーススパイクを利用して情報を表現し、イベント駆動方式で処理する。
シナプス重みと膜電位の両方に量子化を適用する軽量でハードウェアフレンドリな量子化SNNを提案する。
本稿では,情報エントロピー理論にインスパイアされた新しいウェイトスパイクデュアルレギュレーション(WS-DR)法を提案する。
論文 参考訳(メタデータ) (2024-06-19T16:23:26Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
本稿では、量子コンピューティングの原理と古典的な機械学習アルゴリズムを統合する新しい量子混合状態注意ネットワーク(QMSAN)を紹介する。
QMSANモデルは混合状態に基づく量子アテンション機構を採用し、量子領域内のクエリとキー間の類似性を効率的に直接推定することを可能にする。
本研究は,QMSANが低雑音に対する可換ロバスト性を有することを示すため,異なる量子雑音環境におけるモデルのロバスト性について検討した。
論文 参考訳(メタデータ) (2024-03-05T11:29:05Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
本稿では,量子ニューラルネットワークのための新しい量子ニューラルネットワークモデルを提案する。
我々のモデルは、状態空間のサイズがニューロンの数とともに指数関数的に大きくなるという問題を回避している。
我々は手書き文字認識や他の非線形分類タスクのモデルをベンチマークする。
論文 参考訳(メタデータ) (2023-05-15T11:16:47Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
量子ニューラルネットワーク(QNN)は、現代の量子マシンの力を発揮する。
ハンドクラフト対称アンサーゼを持つQNNは、一般に非対称アンサーゼを持つものよりも訓練性が高い。
本稿では,QNNのグローバル最適収束を定量化するために,実効量子ニューラルネットワークカーネル(EQNTK)を提案する。
論文 参考訳(メタデータ) (2022-08-30T08:17:55Z) - On exploring practical potentials of quantum auto-encoder with
advantages [92.19792304214303]
量子オートエンコーダ(QAE)は、量子物理学で遭遇する次元の呪いを和らげるための強力なツールである。
我々はQAEを用いて固有値を効率的に計算し、高次元量子状態の対応する固有ベクトルを作成できることを証明した。
低ランク状態の忠実度推定,量子ギブス状態準備,量子メトロジーの課題を解決するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。