論文の概要: Efficient LLM Context Distillation
- arxiv url: http://arxiv.org/abs/2409.01930v2
- Date: Mon, 12 May 2025 01:26:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.661822
- Title: Efficient LLM Context Distillation
- Title(参考訳): 効率的なLLMコンテキスト蒸留
- Authors: Rajesh Upadhayayaya, Manish Raj Osti, Zachary Smith, Chritopher Kottmyer,
- Abstract要約: In-context Learning (ICL) と few-shot Fine-tuning (FT) による文脈蒸留の比較分析を行った。
学生モデルは、コンテキスト内学習に匹敵するドメイン内精度とドメイン外精度を達成する。
文脈蒸留はドメイン外一般化においてICLを超えるが、FTの性能レベルは達成しない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) demonstrate proficiency across diverse tasks but often require targeted adaptations for specific applications. Various methods have been proposed to facilitate this adaptation, including fewshot fine-tuning, in-context learning, and context distillation. This paper specifically investigates context distillation a method that extends the utility of task-specific examples by internalizing them, thus augmenting the example set accessible for model inference. We conduct a comparative analysis of context distillation with in-context learning (ICL) and few-shot fine-tuning (FT), aiming to ascertain the efficacy of context distillation in adapting models using minimal in-context examples. Employing matched datasets from Mobach, our experiments leverage OPT models of various sizes. The results indicate that context distillation effectively adapts models, with student models attaining comparable in-domain and out-of-domain accuracies to in-context learning. Although context distillation surpasses ICL in out-of-domain generalization, it does not achieve the performance levels of FT. However, the reduced dataset size and computational demands position context distillation as a viable alternative, especially for smaller datasets. Overall, this study presents context distillation as an efficient and potent method for customizing LLMs to specific tasks.
- Abstract(参考訳): 大きな言語モデル(LLM)は、様々なタスクにまたがる習熟度を示すが、特定のアプリケーションに対してターゲット適応を必要とすることが多い。
この適応を促進するための様々な手法が提案されており、例えば、小銃の微調整、文脈内学習、文脈蒸留などがある。
本稿では,タスク固有の例を内在化して有効性を拡張する手法として,文脈蒸留を特に検討し,モデル推論に利用できる例をさらに増やす。
In-context Learning (ICL) と few-shot Fine-tuning (FT) による文脈蒸留の比較分析を行い、最小限の文脈内例を用いた適応モデルにおける文脈蒸留の有効性を確認することを目的とした。
Mobachのマッチングデータセットを利用することで、実験では様々なサイズのOPTモデルを活用できる。
その結果、文脈蒸留はモデルに効果的に適応し、学生モデルはドメイン内とドメイン外アキュラシーに匹敵する精度で、コンテキスト内学習に適応することが示唆された。
文脈蒸留はドメイン外一般化においてICLを超えるが、FTの性能レベルは達成しない。
しかし、データセットのサイズが縮小し、特に小さなデータセットでは、文脈蒸留が有効な代替手段となることを要求する。
本研究は, 文脈蒸留を, LLMを特定のタスクにカスタマイズするための効率的かつ強力な方法として提示する。
関連論文リスト
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
大規模言語モデル(LLM)は、強化学習(RL)による微調整時に強い推論能力を示す。
トレーニング対象のモデルの性能に基づいて,効率的な学習を可能にする自己評価学習フレームワークである textbfSPaRFT を提案する。
論文 参考訳(メタデータ) (2025-08-07T03:50:48Z) - Honey, I Shrunk the Language Model: Impact of Knowledge Distillation Methods on Performance and Explainability [3.224880576815583]
大規模言語モデルの高い計算とストレージ要求は、リソース制約のある環境への展開を制限する。
これまでの研究では, 学習データの生成と学生モデルの訓練のための蒸留法がいくつか導入されている。
その関連性にも拘わらず, 現状蒸留法がモデル性能および説明可能性に与える影響については, 十分に検討されていない。
論文 参考訳(メタデータ) (2025-04-22T17:32:48Z) - LLMs as Data Annotators: How Close Are We to Human Performance [47.61698665650761]
データのマニュアルアノテーションは、労働集約的で、時間がかかり、コストがかかる。
In-context Learning (ICL) では、タスクに関連するいくつかの例がプロンプトで与えられると、非効率性や準最適モデルの性能につながる可能性がある。
本稿では,NERタスクの様々なデータセットに対して,異なる埋め込みモデルを考慮した複数のLLMの比較実験を行う。
論文 参考訳(メタデータ) (2025-04-21T11:11:07Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
In this work introduced Context-aware Prompt Tuning (CPT) - ICL, PT, and adversarial attack。
入力および出力フォーマットのユニークな構造を考慮して、特定のコンテキストトークンを変更する。
敵の攻撃にインスパイアされた我々は、損失を最大化するのではなく、最小化に焦点をあてて、コンテキストに存在するラベルに基づいて入力を調整する。
論文 参考訳(メタデータ) (2024-10-22T17:45:47Z) - DiSCo Meets LLMs: A Unified Approach for Sparse Retrieval and Contextual Distillation in Conversational Search [19.694957365385896]
会話検索(英語: Conversational Search, CS)は、コーパスから関連文書を会話コンテキスト内で検索するタスクである。
現在の手法では、人間が書き直したクエリから埋め込みを蒸留してコンテキストモデリングタスクを学習することでこの問題に対処している。
本稿では,従来の目的を緩和し,検索とコンテキストモデリングを統一する新しい蒸留法を提案する。
論文 参考訳(メタデータ) (2024-10-18T17:03:17Z) - Unleashing the Power of Large Language Models in Zero-shot Relation Extraction via Self-Prompting [21.04933334040135]
本稿では,大規模言語モデルに組み込まれたRE知識を十分に活用する新しい手法であるSelf-Promptingフレームワークを紹介する。
我々のフレームワークは3段階の多様性アプローチを用いてLSMを誘導し、スクラッチから特定の関係をカプセル化する複数の合成サンプルを生成する。
ベンチマークデータセットを用いた実験により,既存のLCMベースのゼロショットRE法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-10-02T01:12:54Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Making Text Embedders Few-Shot Learners [33.50993377494602]
本稿では,高品質なテキスト埋め込みを実現するために,少数の例を用いた新しいモデルbge-en-iclを提案する。
提案手法では,タスク関連例をクエリ側に直接統合することで,タスク間の大幅な改善を実現している。
MTEBおよびAIR-Benchベンチマークによる実験結果から,本手法がSOTA(State-of-the-art)性能を新たに設定することを示す。
論文 参考訳(メタデータ) (2024-09-24T03:30:19Z) - In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
大規模言語モデル(LLM)の文脈内学習は、いくつかの例で拡張された命令に基づいて予測を行う。
ICLの既存の例選択方法はスパースまたは高密度レトリバーを使用し、有効性能を導出する。
本稿では,言語モデルセレクタとLLMジェネレータから構成される実例選択(RLS)のためのポリシーベース強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T12:32:12Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
大きな言語モデル(LLM)は、入力クエリから人間のようなテキストを理解し、生成する能力を持つ。
本研究では、この概念を、レトリーバル拡張生成(RAG)パイプライン内のLLMの統合に拡張する。
データ抽出と文脈理解における微調整がLLMの能力に与える影響を評価する。
論文 参考訳(メタデータ) (2024-06-17T04:35:17Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - Comparative Analysis of Different Efficient Fine Tuning Methods of Large Language Models (LLMs) in Low-Resource Setting [0.0]
我々は、大規模言語モデル(LLM)の様々な微調整戦略の理解を深めようとしている。
我々は,2つのデータセット(COLAとMNLI)で事前学習したモデルに対して,バニラファインチューニングやPBFT(Pattern-Based Fine-Tuning)のような最先端の手法を比較した。
以上の結果から,バニラFTやPBFTに匹敵する領域外一般化が期待できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-21T20:08:52Z) - Discourse-Aware In-Context Learning for Temporal Expression Normalization [7.621550020607368]
本研究では、TE正規化のためのプロプライエタリおよびオープンソースの大規模言語モデル(LLM)の実現可能性について検討する。
ウィンドウベースのプロンプト設計アプローチを用いることで、モデルを訓練することなくLLM知識を活用しながら、文間でTE正規化を行うことができる。
この課題のために設計されたモデルに対する競争結果を示す実験を行った。
論文 参考訳(メタデータ) (2024-04-11T14:13:44Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
大規模言語モデル(LLM)が自然言語処理の標準となっている。
インコンテキスト・ラーニング(ICL)は、いくつかの実演例の選択に依存している。
パラレルインコンテキスト学習(ParaICL)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-31T05:56:15Z) - ELAD: Explanation-Guided Large Language Models Active Distillation [16.243249111524403]
LLM(Large Language Models)のデプロイメントと適用は、そのメモリ非効率性、計算要求、API推論の高コストによって妨げられている。
LLMの能力をより小さなモデルに伝達する伝統的な蒸留法は、知識が十分に伝達されているかどうかを判断できないことが多い。
本稿では,アノテーションコストとモデル性能のバランスを最適化するために,アクティブラーニング戦略を用いた説明誘導型ELAD(Explaination-Guided LLMs Active Distillation)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-20T15:47:59Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - Learning to Retrieve In-Context Examples for Large Language Models [69.9707552694766]
大規模言語モデル(LLM)は、文脈内で学習する能力を示している。
文脈内学習の有効性は、選択した例の品質に大きく依存する。
高品質なインコンテキストの例を識別可能な高密度検索を反復的に学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-14T05:23:08Z) - Large Language Model Programs [74.31873455763275]
近年,大規模な事前学習型言語モデル (LLM) は,いくつかの例から指示に従うことや,新しいタスクを実行する能力を示している。
本稿では,この推論の行を拡張し,アルゴリズムやプログラムに組み込んでLLMの機能をさらに拡張する手法を提案する。
我々は、よりアルゴリズム的なアプローチにより、微調整をせずに、思考ベースラインの連鎖よりも6.4%改善する。
論文 参考訳(メタデータ) (2023-05-09T11:55:36Z) - Finding Support Examples for In-Context Learning [73.90376920653507]
本稿では,この課題を2段階に解決するためのfilter-thEN-Search法であるLENSを提案する。
まず、データセットをフィルタリングして、個別に情報的インコンテキストの例を得る。
そこで本研究では,反復的に改良し,選択したサンプル順列を評価可能な多様性誘導型サンプル探索を提案する。
論文 参考訳(メタデータ) (2023-02-27T06:32:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。