論文の概要: Optimal L-Systems for Stochastic L-system Inference Problems
- arxiv url: http://arxiv.org/abs/2409.02259v1
- Date: Tue, 3 Sep 2024 19:34:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 21:27:46.215446
- Title: Optimal L-Systems for Stochastic L-system Inference Problems
- Title(参考訳): 確率L系推論問題に対する最適L系
- Authors: Ali Lotfi, Ian McQuillan,
- Abstract要約: 本稿では,与えられた文字列列を生成することができる最適L-システムの構築に焦点を当てる。
与えられたシーケンスから最適L系を推論するアルゴリズムを導入する。
これにより、トレーニングに陽性データのみを使用して機械学習のモデルとしてLシステムを使用することが可能になる。
- 参考スコア(独自算出の注目度): 1.9183348587701112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents two novel theorems that address two open problems in stochastic Lindenmayer-system (L-system) inference, specifically focusing on the construction of an optimal stochastic L-system capable of generating a given sequence of strings. The first theorem delineates a method for crafting a stochastic L-system that maximizes the likelihood of producing a given sequence of words through a singular derivation. Furthermore, the second theorem determines the stochastic L-systems with the highest probability of producing a given sequence of words with multiple possible derivations. From these, we introduce an algorithm to infer an optimal stochastic L-system from a given sequence. This algorithm incorporates sophisticated optimization techniques, such as interior point methods, ensuring production of a stochastically optimal stochastic L-system suitable for generating the given sequence. This allows for the use of using stochastic L-systems as model for machine learning using only positive data for training.
- Abstract(参考訳): 本稿では、確率的リンデンマイヤー系(L-system)推論における2つの開問題に対処する2つの新しい定理を提案し、特に与えられた文字列列を生成することができる最適確率的L-systemの構築に焦点を当てる。
最初の定理は、与えられた単語列を特異導出によって生成する確率を最大化する確率的L-システムを構築する方法を示している。
さらに、第2の定理は、複数の導出可能な単語列を生成する確率が最も高い確率で確率的なL-系を決定する。
そこで本研究では,与えられたシーケンスから最適確率L系を推定するアルゴリズムを提案する。
このアルゴリズムは、内部点法のような洗練された最適化手法を取り入れ、与えられたシーケンスを生成するのに適した確率論的確率L-システムの生成を保証する。
これにより、学習用正のデータのみを使用して機械学習のモデルとして確率的なL-システムを使用することが可能になる。
関連論文リスト
- Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Adaptive First- and Second-Order Algorithms for Large-Scale Machine
Learning [3.0204520109309843]
機械学習における連続最適化問題に対処する一階法と二階法を考察する。
一階述語の場合、半決定論的から二次正規化への遷移の枠組みを提案する。
本稿では,適応的なサンプリングと適応的なステップサイズを持つ新しい1次アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-29T18:10:00Z) - Safe Real-Time Optimization using Multi-Fidelity Gaussian Processes [0.0]
本稿では,不確実なプロセスのシステムミスマッチを克服するリアルタイム最適化手法を提案する。
提案方式では, 既知のプロセスモデルをエミュレートする2つのガウス過程と, 測定による真のシステムを用いる。
論文 参考訳(メタデータ) (2021-11-10T09:31:10Z) - Nearly Optimal Linear Convergence of Stochastic Primal-Dual Methods for
Linear Programming [5.126924253766052]
提案手法は,高い確率で鋭いインスタンスを解くための線形収束率を示す。
また、制約のない双線型問題に対する効率的な座標ベースのオラクルを提案する。
論文 参考訳(メタデータ) (2021-11-10T04:56:38Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Adaptive Sequential SAA for Solving Two-stage Stochastic Linear Programs [1.6181085766811525]
大規模2段階線形プログラムを解くための適応的逐次SAA(sample average approximation)アルゴリズムを提案する。
提案アルゴリズムは,品質の確率論的保証が与えられた解を返すために,有限時間で停止することができる。
論文 参考訳(メタデータ) (2020-12-07T14:58:16Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。