論文の概要: Alt-MoE:A Scalable Framework for Bidirectional Multimodal Alignment and Efficient Knowledge Integration
- arxiv url: http://arxiv.org/abs/2409.05929v3
- Date: Fri, 20 Dec 2024 06:37:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 13:01:23.780027
- Title: Alt-MoE:A Scalable Framework for Bidirectional Multimodal Alignment and Efficient Knowledge Integration
- Title(参考訳): Alt-MoE:双方向マルチモーダルアライメントと効率的な知識統合のためのスケーラブルなフレームワーク
- Authors: Hongyang Lei, Xiaolong Cheng, Dan Wang, Kun Fan, Qi Qin, Huazhen Huang, Yetao Wu, Qingqing Gu, Zhonglin Jiang, Yong Chen, Luo Ji,
- Abstract要約: マルチモーダル学習は、共有潜在空間内で異なるモダリティを整列させることにより、著しく進歩した。
直接アライメントは、豊富なモダル内知識を十分に活用するのに苦労し、しばしばクロスモーダル表現を達成するために広範なトレーニングデータを必要とする。
Alt-MoEはスケーラブルなマルチモーダルアライメントフレームワークで、モダリティをまたいだ多方向コネクタとして専門家(MoE)モデルの混合を利用する。
- 参考スコア(独自算出の注目度): 6.928469290518152
- License:
- Abstract: Multimodal learning has advanced significantly by aligning different modalities within shared latent spaces, enabling tasks such as cross-modal understanding and generation. Current alignment strategies in multimodal learning primarily include direct alignment using pre-trained or unified encoders and single-directional alignment via modality-specific connectors. Direct alignment struggles to fully leverage rich intra-modal knowledge, often requiring extensive training data to achieve cross-modal representation. Meanwhile, single-directional alignment methods, despite leveraging pre-trained knowledge, restrict task adaptability and hinder the model's ability to capture bidirectional relationships, leading to incomplete knowledge fusion and underutilization of complementary modality-specific information. To address these limitations, we introduce Alt-MoE, a scalable multimodal alignment framework that employs a mixture of experts (MoE) model as a multi-directional connector across modalities. By utilizing a sequential alternating one-way alignment strategy, Alt-MoE iteratively refines the model to achieve bidirectional alignment. Alt-MoE operates in latent space, enabling efficient vector pre-storage and real-time retrieval via MoE, optimizing large-scale data processing. Extensive empirical studies demonstrate that Alt-MoE achieves competitive performance on cross-modal retrieval and visual question answering by integrating diverse modality-specific knowledge, generalizing to unseen data, and easily scaling to new tasks and modalities through dynamic adjustment of MoE capacity and expert activation.
- Abstract(参考訳): マルチモーダル学習は、共有潜在空間内で異なるモダリティを整列させ、クロスモーダル理解や生成などのタスクを可能にすることで、著しく進歩した。
マルチモーダル学習における現在のアライメント戦略は主に、事前訓練または統一エンコーダを用いた直接アライメントと、モダリティ固有のコネクタによる単方向アライメントを含む。
直接アライメントは、豊富なモダル内知識を十分に活用するのに苦労し、しばしばクロスモーダル表現を達成するために広範なトレーニングデータを必要とする。
一方、単方向アライメント手法は、事前訓練された知識を活用するにもかかわらず、タスク適応性を制限し、モデルが双方向関係を捕捉する能力を阻害し、不完全な知識融合と相補的なモダリティ固有情報の未活用につながる。
これらの制約に対処するため、我々は、多方向コネクターとして専門家(MoE)モデルを混合したスケーラブルなマルチモーダルアライメントフレームワークAlt-MoEを紹介した。
逐次的な一方向アライメント戦略を利用することで、Alt-MoEはモデルを反復的に洗練し、双方向アライメントを実現する。
Alt-MoEは遅延空間で動作し、大規模なデータ処理を最適化し、効率的なベクトル前保存とMoEによるリアルタイム検索を可能にする。
大規模な実証研究により、Alt-MoEは、多種多様なモダリティ固有の知識を統合し、目に見えないデータに一般化し、MoEキャパシティとエキスパートアクティベーションを動的に調整することで、新しいタスクやモダリティに容易にスケーリングすることで、クロスモーダル検索と視覚的質問応答の競争性能を達成することが示された。
関連論文リスト
- SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
本稿では,リモートセンシングのためのマルチモーダルデータセットとマルチタスクオブジェクト検出(M2Det)という新しいタスクを提案する。
水平方向または指向方向の物体を、あらゆるセンサーから正確に検出するように設計されている。
この課題は、1)マルチモーダルモデリングの管理に関わるトレードオフ、2)マルチタスク最適化の複雑さに起因する。
論文 参考訳(メタデータ) (2024-12-30T02:47:51Z) - Towards Modality Generalization: A Benchmark and Prospective Analysis [56.84045461854789]
本稿では,モダリティ・ジェネリゼーション(MG)について述べる。
マルチモーダルアルゴリズムを特徴とする包括的ベンチマークを提案し,一般化に着目した既存手法を適用した。
私たちの研究は、堅牢で適応可能なマルチモーダルモデルを進化させる基盤を提供し、現実的なシナリオで目に見えないモダリティを扱えるようにします。
論文 参考訳(メタデータ) (2024-12-24T08:38:35Z) - Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation [30.33381342502258]
主な課題はユニモーダルバイアス(unimodal bias)であり、マルチモーダルセグメンタが特定のモダリティに依存しているため、他のセグメンタが欠落するとパフォーマンスが低下する。
視覚的モダリティの組み合わせを扱える頑健なセグメンタを学習するための最初のフレームワークを開発する。
論文 参考訳(メタデータ) (2024-11-26T06:15:27Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
既存の手法は、モーダル固有の事前訓練とジョイント・モーダルチューニングに大きく依存しており、新しいモーダルへと拡張する際の計算上の負担が大きくなった。
PathWeaveは、Modal-Path sWitchingとExpAnsion機能を備えた柔軟でスケーラブルなフレームワークである。
PathWeaveは最先端のMLLMと互換性があり、パラメータトレーニングの負担を98.73%削減する。
論文 参考訳(メタデータ) (2024-10-26T13:19:57Z) - Anchors Aweigh! Sail for Optimal Unified Multi-Modal Representations [16.036997801745905]
マルチモーダル学習は、機械学習モデルが多様なデータソースを融合し利用できるようにする上で重要な役割を果たす。
ImageBindのような最近のバインディング手法では、固定アンカーのモダリティを使用して、アンカーのモダル埋め込み空間内のマルチモーダルデータをアライメントする。
我々はCentroBindを提案する。CentroBindは、固定アンカーを必要としない、シンプルだが強力なアプローチである。
論文 参考訳(メタデータ) (2024-10-02T23:19:23Z) - Detached and Interactive Multimodal Learning [17.843121072628477]
本稿では,モダリティにまたがる補完情報を学習するための新しいMMLフレームワークであるDI-MMLを紹介する。
各モダリティエンコーダを独立した学習目標で個別に訓練することで、競争に対処する。
音声・視覚・フロー画像・前面画像データを用いた実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-28T15:38:58Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。