論文の概要: Mesh-based Super-Resolution of Fluid Flows with Multiscale Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2409.07769v1
- Date: Thu, 12 Sep 2024 05:52:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 17:41:46.047476
- Title: Mesh-based Super-Resolution of Fluid Flows with Multiscale Graph Neural Networks
- Title(参考訳): メッシュを用いたマルチスケールグラフニューラルネットワークによる流体の超解法
- Authors: Shivam Barwey, Pinaki Pal, Saumil Patel, Riccardo Balin, Bethany Lusch, Venkatram Vishwanath, Romit Maulik, Ramesh Balakrishnan,
- Abstract要約: メッシュベースの流体の3次元超解像を可能にするグラフニューラルネットワーク(GNN)アプローチが本研究で導入された。
このフレームワークでは、GNNは一度に完全なメッシュベースのフィールドでではなく、要素(またはセル)の局所的なメッシュで動くように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A graph neural network (GNN) approach is introduced in this work which enables mesh-based three-dimensional super-resolution of fluid flows. In this framework, the GNN is designed to operate not on the full mesh-based field at once, but on localized meshes of elements (or cells) directly. To facilitate mesh-based GNN representations in a manner similar to spectral (or finite) element discretizations, a baseline GNN layer (termed a message passing layer, which updates local node properties) is modified to account for synchronization of coincident graph nodes, rendering compatibility with commonly used element-based mesh connectivities. The architecture is multiscale in nature, and is comprised of a combination of coarse-scale and fine-scale message passing layer sequences (termed processors) separated by a graph unpooling layer. The coarse-scale processor embeds a query element (alongside a set number of neighboring coarse elements) into a single latent graph representation using coarse-scale synchronized message passing over the element neighborhood, and the fine-scale processor leverages additional message passing operations on this latent graph to correct for interpolation errors. Demonstration studies are performed using hexahedral mesh-based data from Taylor-Green Vortex flow simulations at Reynolds numbers of 1600 and 3200. Through analysis of both global and local errors, the results ultimately show how the GNN is able to produce accurate super-resolved fields compared to targets in both coarse-scale and multiscale model configurations. Reconstruction errors for fixed architectures were found to increase in proportion to the Reynolds number, while the inclusion of surrounding coarse element neighbors was found to improve predictions at Re=1600, but not at Re=3200.
- Abstract(参考訳): メッシュベースの流体の3次元超解像を可能にするグラフニューラルネットワーク(GNN)アプローチが本研究で導入された。
このフレームワークでは、GNNは一度に完全なメッシュベースのフィールドでではなく、要素(またはセル)の局所的なメッシュで動くように設計されている。
スペクトル(または有限)要素の離散化に類似したメッシュベースのGNN表現を容易にするため、共通グラフノードの同期を考慮したベースラインGNN層(ローカルノード特性を更新するメッセージパッシング層)が修正され、一般的に使用される要素ベースのメッシュ接続性との整合性が向上する。
アーキテクチャは本質的にマルチスケールであり、グラフアンプール層によって分離された粗大なメッセージパッシング層シーケンスと微細なメッセージパッシング層シーケンス(終端プロセッサ)の組み合わせで構成されている。
粗いスケールのプロセッサは、クエリ要素(近隣の粗い要素のセット数とともに)を1つの潜伏グラフ表現に埋め込み、粗いスケールの同期メッセージが素子近傍を通過し、微細なスケールのプロセッサは、この潜伏グラフ上の追加のメッセージパッシング操作を利用して補間エラーを補正する。
レイノルズ数1600, 3200におけるテイラー・グリーン・ボルテックス流シミュレーションのヘキサヘドラルメッシュに基づくデータを用いて実証実験を行った。
グローバルとローカルの両方のエラーを分析することで、GNNが粗大なモデル構成とマルチスケールのモデル構成の両方のターゲットと比較して、いかに正確な超解フィールドを生成できるかを最終的に示す。
固定建築の復元誤差はレイノルズ数に比例して増加し, 周囲の粗い要素が組み込まれた場合, Re=1600では予測精度は向上するが, Re=3200では改善しなかった。
関連論文リスト
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - Scalable and Consistent Graph Neural Networks for Distributed Mesh-based Data-driven Modeling [0.0]
この研究は、メッシュベースのモデリングアプリケーションのための分散グラフニューラルネットワーク(GNN)方法論を開発する。
一貫性とは、1つのランク(1つの大きなグラフ)で訓練され評価されたGNNが、複数のランク(分割グラフ)での評価と算術的に等価であるという事実を指す。
NekRSメッシュのパーティショニングが分散GNNトレーニングと推論ルーチンにどのようにリンクできるかを示し、スケーラブルなメッシュベースのデータ駆動モデリングワークフローを実現する。
論文 参考訳(メタデータ) (2024-10-02T15:22:27Z) - BLIS-Net: Classifying and Analyzing Signals on Graphs [20.345611294709244]
グラフニューラルネットワーク(GNN)は、ノード分類やグラフ分類といったタスクのための強力なツールとして登場した。
我々は以前に導入された幾何散乱変換に基づいて構築された新しいGNNであるBLIS-Net(Bi-Lipschitz Scattering Net)を紹介する。
BLIS-Netは,交通流とfMRIデータに基づいて,合成データと実世界のデータの両方において優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-10-26T17:03:14Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Multiscale Graph Neural Network Autoencoders for Interpretable
Scientific Machine Learning [0.0]
この研究の目的は、オートエンコーダベースのモデルにおいて、潜在空間解釈可能性と非構造化メッシュとの互換性という2つの制限に対処することである。
これは、複雑な流体流れのアプリケーションのデモを含む、新しいグラフニューラルネットワーク(GNN)自動エンコーディングアーキテクチャの開発によって達成される。
論文 参考訳(メタデータ) (2023-02-13T08:47:11Z) - A Finite Element-Inspired Hypergraph Neural Network: Application to
Fluid Dynamics Simulations [4.984601297028257]
ディープラーニング研究の新たなトレンドは、連続体力学シミュレーションにおけるグラフニューラルネットワーク(GNN)の適用に焦点を当てている。
本稿では,ノードをエッジではなく要素で接続することでハイパーグラフを構築する手法を提案する。
本稿では,この手法を有限要素インスパイアされたハイパーグラフニューラルネットワーク(FEIH($phi$)-GNN)と呼ぶ。
論文 参考訳(メタデータ) (2022-12-30T04:10:01Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Graph Ordering Attention Networks [22.468776559433614]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに関わる多くの問題でうまく使われている。
近隣ノード間のインタラクションをキャプチャする新しいGNNコンポーネントであるグラフ順序付け注意層(GOAT)を導入する。
GOATレイヤは、複雑な情報をキャプチャするグラフメトリクスのモデリングにおけるパフォーマンスの向上を示す。
論文 参考訳(メタデータ) (2022-04-11T18:13:19Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNNは、Vector Quantization(VQ)を使用して、パフォーマンスを損なうことなく、畳み込みベースのGNNをスケールアップするための普遍的なフレームワークである。
我々のフレームワークは,グラフ畳み込み行列の低ランク版と組み合わせた量子化表現を用いて,GNNの「隣の爆発」問題を回避する。
論文 参考訳(メタデータ) (2021-10-27T11:48:50Z) - Graph Highway Networks [77.38665506495553]
グラフ畳み込みネットワーク(GCN)は、グラフ表現の有効性と効率性から、グラフ表現の学習に広く利用されている。
彼らは、多くの層が積み重ねられたとき、学習された表現が類似したベクトルに収束するという悪名高い過度に滑らかな問題に悩まされる。
本稿では,GCN学習プロセスにおける均一性と不均一性との間のトレードオフのバランスをとるため,ゲーティングユニットを利用したグラフハイウェイネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-09T16:26:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。