論文の概要: Localized Schrödinger Bridge Sampler
- arxiv url: http://arxiv.org/abs/2409.07968v1
- Date: Thu, 12 Sep 2024 12:02:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:39:03.546760
- Title: Localized Schrödinger Bridge Sampler
- Title(参考訳): ローカライズされたシュレーディンガー橋サンプリング機
- Authors: Georg A. Gottwald, Sebastian Reich,
- Abstract要約: 十分な数のトレーニングサンプルしか入手できない未知の分布からサンプリングする際の生成的問題を考察する。
このアプローチの鍵となるボトルネックは、環境状態空間の次元$d$における必要なトレーニングサンプルの指数関数的依存である。
条件付き期待値の条件付き独立性を利用した局所化戦略を提案する。
- 参考スコア(独自算出の注目度): 0.276240219662896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the generative problem of sampling from an unknown distribution for which only a sufficiently large number of training samples are available. In this paper, we build on previous work combining Schr\"odinger bridges and Langevin dynamics. A key bottleneck of this approach is the exponential dependence of the required training samples on the dimension, $d$, of the ambient state space. We propose a localization strategy which exploits conditional independence of conditional expectation values. Localization thus replaces a single high-dimensional Schr\"odinger bridge problem by $d$ low-dimensional Schr\"odinger bridge problems over the available training samples. As for the original approach, the localized sampler is stable and geometric ergodic. The sampler also naturally extends to conditional sampling and to Bayesian inference. We demonstrate the performance of our proposed scheme through experiments on a Gaussian problem with increasing dimensions and on a stochastic subgrid-scale parametrization conditional sampling problem.
- Abstract(参考訳): 十分な数のトレーニングサンプルしか入手できない未知の分布からサンプリングする際の生成的問題を考察する。
本稿では、Schr\\odinger BridgesとLangevin dynamicsを組み合わせた以前の研究に基づいて構築する。
このアプローチの鍵となるボトルネックは、環境状態空間の次元$d$における必要なトレーニングサンプルの指数関数的依存である。
条件付き期待値の条件付き独立性を利用した局所化戦略を提案する。
したがって、ローカライゼーションは単一の高次元シュリンガーブリッジ問題を、利用可能なトレーニングサンプルよりも$d$低次元シュリンガーブリッジ問題に置き換える。
元のアプローチでは、局所化サンプリングは安定で幾何学的エルゴディックである。
サンプルは自然に条件付きサンプリングやベイズ推論にも拡張される。
本稿では,次元の増大を伴うガウス問題と,確率的サブグリッドスケールパラメトリゼーション条件付きサンプリング問題に関する実験を通じて提案手法の性能を実証する。
関連論文リスト
- Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
ノイズからの画像生成とデータからの逆変換の両方を可能にする拡散モデル (DM) は、強力な未ペア画像対イメージ(I2I)翻訳アルゴリズムにインスピレーションを与えている。
我々は、最小輸送コストの分布間の微分方程式(SDE)であるSchrodinger Bridges (SBs) を用いてこの問題に取り組む。
この観測に触発されて,SB ODE を予め訓練した安定拡散により近似する潜在シュロディンガー橋 (LSB) を提案する。
提案アルゴリズムは,従来のDMのコストをわずかに抑えながら,教師なし環境での競合的I2I翻訳を実現していることを示す。
論文 参考訳(メタデータ) (2024-11-22T11:24:14Z) - Through the Looking Glass: Mirror Schrödinger Bridges [16.05211717546091]
密度が不明な対象尺度からのサンプリングは、数学統計学と機械学習の基本的な問題である。
そこで本研究では,ミラー・シュル「オーディンガー橋」と呼ばれるコンディショナル・リサンプリングの新たなモデルを提案する。
論文 参考訳(メタデータ) (2024-10-09T15:48:56Z) - HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
本稿では,ブラウン運動文脈におけるコールホップ変換(Cole-Hopf transform)と呼ばれるログ変換に基づく。
本稿では,HJ-sampler という新しいアルゴリズムを開発し,与えられた終端観測による微分方程式の逆問題に対する推論を行う。
論文 参考訳(メタデータ) (2024-09-15T05:30:54Z) - Soft-constrained Schrodinger Bridge: a Stochastic Control Approach [4.922305511803267]
シュル「オーディンガー橋」は、最適に制御された拡散過程を見つけることを目標とする連続時間制御問題と見なすことができる。
本稿では,両分布間のKulback-Leiblerの相違を罰し,端末分布を目標と異なるものにすることで,この問題を一般化することを提案する。
1つの応用は、堅牢な生成拡散モデルの開発である。
論文 参考訳(メタデータ) (2024-03-04T04:10:24Z) - Stable generative modeling using Schrödinger bridges [0.22499166814992438]
本稿では,Schr"odinger BridgesとLangevin dynamicsを組み合わせた生成モデルを提案する。
我々のフレームワークは自然に条件付きサンプルを生成し、ベイズ推論問題に拡張することができる。
論文 参考訳(メタデータ) (2024-01-09T06:15:45Z) - Conditioning Normalizing Flows for Rare Event Sampling [61.005334495264194]
本稿では,ニューラルネットワーク生成構成に基づく遷移経路サンプリング手法を提案する。
本手法は遷移領域の熱力学と運動学の両方の解法を可能にすることを示す。
論文 参考訳(メタデータ) (2022-07-29T07:56:10Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
本研究では,空間統計学から広く用いられている点過程の適応センシングについて検討する。
我々は、この強度関数を、特別に構築された正の基底で表される、歪んだガウス過程のサンプルとしてモデル化する。
我々の適応センシングアルゴリズムはランゲヴィン力学を用いており、後続サンプリング(textscCox-Thompson)と後続サンプリング(textscTop2)の原理に基づいている。
論文 参考訳(メタデータ) (2021-10-21T14:47:06Z) - Nested sampling with any prior you like [0.0]
所望の事前密度からサンプルに基づいて訓練されたビジェクターは、変換を構築するための汎用的な方法を提供する。
宇宙論の例を多数挙げて, トレーニングされたビジェクターとネストサンプリングの併用を実演する。
論文 参考訳(メタデータ) (2021-02-24T18:45:13Z) - Oops I Took A Gradient: Scalable Sampling for Discrete Distributions [53.3142984019796]
このアプローチは、多くの困難な設定において、ジェネリックサンプリングよりも優れていることを示す。
また,高次元離散データを用いた深部エネルギーモデルトレーニングのための改良型サンプリング器についても実演した。
論文 参考訳(メタデータ) (2021-02-08T20:08:50Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。