論文の概要: Comparative Study of Long Short-Term Memory (LSTM) and Quantum Long Short-Term Memory (QLSTM): Prediction of Stock Market Movement
- arxiv url: http://arxiv.org/abs/2409.08297v1
- Date: Wed, 4 Sep 2024 19:34:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-22 21:50:24.054455
- Title: Comparative Study of Long Short-Term Memory (LSTM) and Quantum Long Short-Term Memory (QLSTM): Prediction of Stock Market Movement
- Title(参考訳): 長期記憶(LSTM)と量子長期記憶(QLSTM)の比較研究 : 株式市場の動向の予測
- Authors: Tariq Mahmood, Ibtasam Ahmad, Malik Muhammad Zeeshan Ansar, Jumanah Ahmed Darwish, Rehan Ahmad Khan Sherwani,
- Abstract要約: 我々は、機械学習の効率的なモデルを用いて、KSE(Karachi Stock Exchange)100インデックスを予測する。
LSTMとQLSTMの比較結果は,KSE100指数の値と実際の値とを比較して,QLSTMが株式市場の動向を予測する潜在的手法である可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.249660468924754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, financial analysts have been trying to develop models to predict the movement of a stock price index. The task becomes challenging in vague economic, social, and political situations like in Pakistan. In this study, we employed efficient models of machine learning such as long short-term memory (LSTM) and quantum long short-term memory (QLSTM) to predict the Karachi Stock Exchange (KSE) 100 index by taking monthly data of twenty-six economic, social, political, and administrative indicators from February 2004 to December 2020. The comparative results of LSTM and QLSTM predicted values of the KSE 100 index with the actual values suggested QLSTM a potential technique to predict stock market trends.
- Abstract(参考訳): 近年、金融アナリストは株価指数の動きを予測するモデルの開発を試みている。
この仕事は、パキスタンのような曖昧な経済、社会的、政治的状況において困難になる。
本研究では,2004年2月から2020年12月までの26の経済・社会・政治・行政指標の月次データを用いて,長短期記憶(LSTM)や量子長短期記憶(QLSTM)といった機械学習の効率的なモデルを用いて,カラチ証券取引所(KSE)100指数の予測を行った。
LSTMとQLSTMの比較結果は、KSE100指数の値と実際の値とを比較して、QLSTMが株式市場の動向を予測する潜在的手法であることを示唆した。
関連論文リスト
- Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction [0.9217021281095907]
本稿では、AIによる株価トレンド予測を中核研究とする。
2015年から2024年にかけて、有名なTesla車のモデルトレーニングデータセットを作成し、LSTM、GRU、Transformer Modelsと比較した。
その結果,LSTMモデルの精度は94%であった。
論文 参考訳(メタデータ) (2024-10-20T14:00:58Z) - Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning [0.0]
この研究は、既存の株価予測手法に関する文献に基づいており、機械学習とディープラーニングアプローチへのシフトを強調している。
LSTMモデルでは、NSE、インドに上場している18のセクターで180銘柄の歴史的株価を用いて、将来の価格を予測する。
その結果,株価を正確に予測し,投資決定を下す上でLSTMモデルの有効性が示された。
論文 参考訳(メタデータ) (2024-05-28T17:55:54Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Univariate and Multivariate LSTM Model for Short-Term Stock Market
Prediction [1.6114012813668934]
本稿では,インド企業2社の短期株価予測のための2つの異なる入力アプローチを持つLSTMモデルを提案する。
10年間の歴史的データ(2012-2021)を,ヤフー金融のウェブサイトから抽出し,提案手法の分析を行った。
論文 参考訳(メタデータ) (2022-05-08T07:01:12Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - The Interpretability of LSTM Models for Predicting Oil Company Stocks:
Impact of Correlated Features [0.0]
本研究では,石油在庫予測のための長短期記憶(LSTM)citeec04モデルの解釈性に及ぼす相関特性の影響について検討した。
本研究の目的は、原油価格、金価格、米ドルといった市場に影響を与える複数の要因を考慮し、株価予測の精度を向上させることである。
論文 参考訳(メタデータ) (2022-01-02T12:52:37Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - A new approach for trading based on Long Short Term Memory technique [0.0]
我々は,翌日の閉会価格を予測するために,2時間周波数(年次および日次パラメータ)を含むLong Term Memory(LSTM)モデルを構築した。
オープン・ハイ・ロー・クローズな指標やその他の金融比率に基づいて、このアプローチは株式市場の予測を改善することができることを証明している。
論文 参考訳(メタデータ) (2020-01-10T07:56:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。