論文の概要: PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics
- arxiv url: http://arxiv.org/abs/2409.09811v1
- Date: Sun, 15 Sep 2024 18:20:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 17:20:56.613718
- Title: PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics
- Title(参考訳): PROSE-FD:流体力学予測のための複数演算子学習のための多モードPDE基礎モデル
- Authors: Yuxuan Liu, Jingmin Sun, Xinjie He, Griffin Pinney, Zecheng Zhang, Hayden Schaeffer,
- Abstract要約: 不均一な2次元物理系の同時予測のためのゼロショット多モードPDE基礎モデルを提案する。
これらの系は浅い水方程式と、圧縮不可能で圧縮不能な流れを持つナビエ・ストークス方程式を含む。
- 参考スコア(独自算出の注目度): 3.770825791788951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose PROSE-FD, a zero-shot multimodal PDE foundational model for simultaneous prediction of heterogeneous two-dimensional physical systems related to distinct fluid dynamics settings. These systems include shallow water equations and the Navier-Stokes equations with incompressible and compressible flow, regular and complex geometries, and different buoyancy settings. This work presents a new transformer-based multi-operator learning approach that fuses symbolic information to perform operator-based data prediction, i.e. non-autoregressive. By incorporating multiple modalities in the inputs, the PDE foundation model builds in a pathway for including mathematical descriptions of the physical behavior. We pre-train our foundation model on 6 parametric families of equations collected from 13 datasets, including over 60K trajectories. Our model outperforms popular operator learning, computer vision, and multi-physics models, in benchmark forward prediction tasks. We test our architecture choices with ablation studies.
- Abstract(参考訳): ProSE-FD, ゼロショット多モードPDE基礎モデルを提案し, 異なる流体力学設定に関連する不均一な2次元物理系の同時予測を行う。
これらの系は浅い水方程式と、圧縮不能で圧縮不能な流れを持つナビエ・ストークス方程式、正規および複素幾何学、および異なる浮力設定を含む。
本研究は,演算子に基づくデータ予測,すなわち非自己回帰(non-autoregressive)を実行するために,シンボル情報を融合する,トランスフォーマーに基づく新しいマルチオペレータ学習手法を提案する。
入力に複数のモダリティを組み込むことで、PDEファンデーションモデルは物理行動の数学的記述を含む経路に構築される。
我々は、60K以上の軌道を含む13のデータセットから収集された6つのパラメトリック方程式の族に関する基礎モデルを事前訓練する。
我々のモデルは、ベンチマークフォワード予測タスクにおいて、一般的な演算子学習、コンピュータビジョン、マルチ物理モデルより優れています。
アーキテクチャの選択をアブレーション研究でテストします。
関連論文リスト
- Towards a Foundation Model for Partial Differential Equations: Multi-Operator Learning and Extrapolation [4.286691905364396]
本稿では,PROSE-PDEという科学問題に対するマルチモーダル基礎モデルを提案する。
本モデルは,物理系の制御方程式を並列に学習しながら,システムの将来の状態を予測できるマルチオペレータ学習手法である。
論文 参考訳(メタデータ) (2024-04-18T17:34:20Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Differentiable physics-enabled closure modeling for Burgers' turbulence [0.0]
本稿では、既知の物理と機械学習を組み合わせて乱流問題に対するクロージャモデルを開発する微分可能な物理パラダイムを用いたアプローチについて論じる。
我々は、モデルの有効性をテストするために、後方損失関数上の様々な物理仮定を組み込んだ一連のモデルを訓練する。
既知物理あるいは既存の閉包アプローチを含む偏微分方程式の形で帰納バイアスを持つ制約モデルが、非常にデータ効率が高く、正確で、一般化可能なモデルを生成することを発見した。
論文 参考訳(メタデータ) (2022-09-23T14:38:01Z) - Data-driven, multi-moment fluid modeling of Landau damping [6.456946924438425]
プラズマ系の流体偏微分方程式(PDE)を学習するために,ディープラーニングアーキテクチャを適用した。
学習した多モーメント流体PDEはランダウ減衰などの運動効果を取り入れることを示した。
論文 参考訳(メタデータ) (2022-09-10T19:06:12Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
複雑/マルチスケールシステムの集合力学を制御するための方程式/変数自由機械学習(EVFML)フレームワークを提案する。
提案手法は3段階からなる: (A) 高次元エージェントベースシミュレーション、機械学習(特に非線形多様体学習(DM))
創発力学の数値分岐解析を行うために方程式のない手法を用いる。
我々は,エージェントをベースとしたシミュレータを本質的で不正確に知られ,創発的なオープンループ定常状態に駆動する,データ駆動型組込み洗浄制御器を設計する。
論文 参考訳(メタデータ) (2022-07-12T18:16:22Z) - Multi-scale Physical Representations for Approximating PDE Solutions
with Graph Neural Operators [14.466945570499183]
EmphMessage Passing Graph Neural Networks (MPGNN) を近似した積分カーネル演算子を用いた3つのマルチレゾリューションスキーマについて検討する。
本研究では, 定常かつ非定常なPDEを考慮したMPGNN実験を行った。
論文 参考訳(メタデータ) (2022-06-29T14:42:03Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。