論文の概要: LLMs in Education: Novel Perspectives, Challenges, and Opportunities
- arxiv url: http://arxiv.org/abs/2409.11917v1
- Date: Wed, 18 Sep 2024 12:29:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 17:50:39.172911
- Title: LLMs in Education: Novel Perspectives, Challenges, and Opportunities
- Title(参考訳): LLMs in Education: New Perspectives, Challenges, and Opportunities
- Authors: Bashar Alhafni, Sowmya Vajjala, Stefano Bannò, Kaushal Kumar Maurya, Ekaterina Kochmar,
- Abstract要約: 教育における大規模言語モデル(LLM)の役割は、現在ますます注目されている分野である。
本チュートリアルでは,NLPの教育応用について概説する。
- 参考スコア(独自算出の注目度): 11.361215739202471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The role of large language models (LLMs) in education is an increasing area of interest today, considering the new opportunities they offer for teaching, learning, and assessment. This cutting-edge tutorial provides an overview of the educational applications of NLP and the impact that the recent advances in LLMs have had on this field. We will discuss the key challenges and opportunities presented by LLMs, grounding them in the context of four major educational applications: reading, writing, and speaking skills, and intelligent tutoring systems (ITS). This COLING 2025 tutorial is designed for researchers and practitioners interested in the educational applications of NLP and the role LLMs have to play in this area. It is the first of its kind to address this timely topic.
- Abstract(参考訳): 教育における大規模言語モデル(LLM)の役割は、教育、学習、評価のための新たな機会を考えると、今日では関心の領域が増えている。
この最先端のチュートリアルは、NLPの教育応用の概要と、最近のLLMの進歩がこの分野に与える影響を説明している。
我々は,LLMがもたらす重要な課題と機会について,読み書き,話し方,知的学習システム(ITS)の4つの主要な教育的応用の文脈で論じる。
この2025年のチュートリアルは、NLPの教育的応用とLLMの役割に関心のある研究者や実践者向けにデザインされている。
このタイムリーな話題に対処するのは、今回が初めてである。
関連論文リスト
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-17T12:58:17Z) - Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
我々は、外国語教育(FLE)において、大きな言語モデル(LLM)が効果的な家庭教師として機能する可能性を主張する。
具体的には、(1)データエンハンサーとして、(2)学習教材の作成や学生シミュレーションとして、(2)タスク予測器として、学習者の評価や学習経路の最適化に、(3)エージェントとして、そして、パーソナライズされた包括的教育を可能にする3つの重要な役割を果たせる。
論文 参考訳(メタデータ) (2025-02-08T06:48:49Z) - Large Language Models Meet NLP: A Survey [79.74450825763851]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて印象的な機能を示している。
本研究は,以下の課題を探求することによって,このギャップに対処することを目的とする。
論文 参考訳(メタデータ) (2024-05-21T14:24:01Z) - Large Language Models for Education: A Survey [32.42330148200439]
大規模言語モデル(LLM)は、様々なアプリケーションでますます使われている。
LLMをスマート教育(LLMEdu)に利用することは、世界中の国々にとって重要な戦略的方向性である。
LLMは、教育の質の向上、教育モデルの変更、教師の役割の変更において大きな期待を示してきたが、これらの技術は依然としていくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-05-12T01:50:01Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - Large Language Models and Games: A Survey and Roadmap [3.691822987444594]
大規模言語モデル(LLM)は、ゲームを含む幅広いアプリケーションやドメインにおいて、顕著なポテンシャルを示している。
本稿では,ゲームにおけるLLMの様々な応用状況を調査し,ゲーム内でLLMが果たす役割について検討する。
論文 参考訳(メタデータ) (2024-02-28T19:09:08Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
大規模言語モデル(LLM)は、個々の要求を解釈することでこの問題を解決する可能性を提供する。
本稿では, 数学, 文章, プログラミング, 推論, 知識に基づく質問応答など, 教育能力に関する最近のLLM研究を概観する。
論文 参考訳(メタデータ) (2023-12-27T14:37:32Z) - Large Language Models in Education: Vision and Opportunities [23.399139761508934]
本稿では,大規模言語モデル(LLM)の研究背景とモチベーションを紹介する。
次に、デジタル教育とEduLLMの関係について論じ、教育大規模モデルの現在の研究状況について要約する。
主な貢献は、研究背景の体系的概要とビジョン、大規模教育モデル(LLM4Edu)のモチベーションと応用である。
論文 参考訳(メタデータ) (2023-11-22T05:04:20Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。