論文の概要: Harmonic Path Integral Diffusion
- arxiv url: http://arxiv.org/abs/2409.15166v1
- Date: Mon, 23 Sep 2024 16:20:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 14:13:28.242866
- Title: Harmonic Path Integral Diffusion
- Title(参考訳): 高調波路積分拡散
- Authors: Hamidreza Behjoo, Michael Chertkov,
- Abstract要約: 連続多変量確率分布からサンプリングする新しい手法を提案する。
本手法は状態空間の起点を中心とするデルタ関数から時間依存ブリッジを構築する。
- 参考スコア(独自算出の注目度): 0.4527270266697462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this manuscript, we present a novel approach for sampling from a continuous multivariate probability distribution, which may either be explicitly known (up to a normalization factor) or represented via empirical samples. Our method constructs a time-dependent bridge from a delta function centered at the origin of the state space at $t=0$, optimally transforming it into the target distribution at $t=1$. We formulate this as a Stochastic Optimal Control problem of the Path Integral Control type, with a cost function comprising (in its basic form) a quadratic control term, a quadratic state term, and a terminal constraint. This framework, which we refer to as Harmonic Path Integral Diffusion (H-PID), leverages an analytical solution through a mapping to an auxiliary quantum harmonic oscillator in imaginary time. The H-PID framework results in a set of efficient sampling algorithms, without the incorporation of Neural Networks. The algorithms are validated on two standard use cases: a mixture of Gaussians over a grid and images from CIFAR-10. We contrast these algorithms with other sampling methods, particularly simulated annealing and path integral sampling, highlighting their advantages in terms of analytical control, accuracy, and computational efficiency on benchmark problems. Additionally, we extend the methodology to more general cases where the underlying stochastic differential equation includes an external deterministic, possibly non-conservative force, and where the cost function incorporates a gauge potential term. These extensions open up new possibilities for applying our framework to a broader range of statistics specific to applications.
- Abstract(参考訳): 本稿では,連続多変量確率分布から抽出する新しい手法を提案する。
本手法は,状態空間の起点を中心とするデルタ関数を$t=0$とし,最適に目標分布に$t=1$で変換する。
我々はこれをパス積分制御型の確率的最適制御問題として定式化し、コスト関数は2次制御項、2次状態項、終端制約を含む。
このフレームワークはハーモニックパス積分拡散(H-PID)と呼ばれ、仮想時間における補助量子調和振動子への写像を通じて解析解を利用する。
H-PIDフレームワークは、ニューラルネットワークを組み込まずに、効率的なサンプリングアルゴリズムのセットをもたらす。
アルゴリズムはグリッド上のガウスの混合とCIFAR-10の画像の2つの標準的なユースケースで検証される。
我々はこれらのアルゴリズムを,他のサンプリング手法,特にシミュレートされたアニールおよびパス積分サンプリングと対比し,ベンチマーク問題に対する解析的制御,精度,計算効率の観点からそれらの利点を強調した。
さらに、この方法論を、基礎となる確率微分方程式が外的決定論的、おそらく非保守的力を含み、コスト関数がゲージポテンシャル項を含むより一般的なケースにまで拡張する。
これらの拡張は、アプリケーション固有の幅広い統計に我々のフレームワークを適用する新しい可能性を開く。
関連論文リスト
- HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
本稿では,ブラウン運動文脈におけるコールホップ変換(Cole-Hopf transform)と呼ばれるログ変換に基づく。
本稿では,HJ-sampler という新しいアルゴリズムを開発し,与えられた終端観測による微分方程式の逆問題に対する推論を行う。
論文 参考訳(メタデータ) (2024-09-15T05:30:54Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
グラディエントアセンセントパルス工学(GRAPE)法は量子制御の最適化に広く用いられている。
我々は、コヒーレント制御と非コヒーレント制御の両方によって駆動されるオープン量子系の目的関数を最適化するために、GRAPE法を採用する。
状態-状態遷移問題に対する数値シミュレーションによりアルゴリズムの効率を実証する。
論文 参考訳(メタデータ) (2023-07-17T13:37:18Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Probability flow solution of the Fokker-Planck equation [10.484851004093919]
確率の流れを記述した常微分方程式の統合に基づく代替スキームを導入する。
力学とは異なり、この方程式は決定論的に初期密度からのサンプルを後から溶液のサンプルにプッシュする。
我々のアプローチは、生成モデルのためのスコアベース拡散の最近の進歩に基づいている。
論文 参考訳(メタデータ) (2022-06-09T17:37:09Z) - A blob method method for inhomogeneous diffusion with applications to
multi-agent control and sampling [0.6562256987706128]
重み付き多孔質媒質方程式(WPME)に対する決定論的粒子法を開発し,その収束性を時間間隔で証明する。
提案手法は,マルチエージェントカバレッジアルゴリズムや確率測定のサンプリングに自然に応用できる。
論文 参考訳(メタデータ) (2022-02-25T19:49:05Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
本稿では,コントローラの空間を直接探索することにより,未知の計算系に対する最適制御を求める。
我々は、安定化フィードバックゲインの勾配-フローのダイナミクスセットに焦点をあてて、そのような手法の性能と効率を最小化するための一歩を踏み出した。
論文 参考訳(メタデータ) (2019-12-26T16:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。