論文の概要: Polynomial-Spline Neural Networks with Exact Integrals
- arxiv url: http://arxiv.org/abs/2110.14055v1
- Date: Tue, 26 Oct 2021 22:12:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 07:15:05.350178
- Title: Polynomial-Spline Neural Networks with Exact Integrals
- Title(参考訳): 厳密な積分を持つ多項式スプラインニューラルネットワーク
- Authors: Jonas A. Actor and Andy Huang and Nathaniel Trask
- Abstract要約: 我々は,実験モデルの混合と自由結び目B1-スプライン基底関数を組み合わせた新しいニューラルネットワークアーキテクチャを開発した。
我々のアーキテクチャは近似理論から期待される収束率での回帰問題に対する$h$-および$p$-の洗練を示す。
ネットワークアーキテクチャの一貫性と正確な統合性を示す様々な回帰問題と変分問題において、我々のネットワークの成功を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using neural networks to solve variational problems, and other scientific
machine learning tasks, has been limited by a lack of consistency and an
inability to exactly integrate expressions involving neural network
architectures. We address these limitations by formulating a novel neural
network architecture that combines a polynomial mixture-of-experts model with
free knot B1-spline basis functions. Effectively, our architecture performs
piecewise polynomial approximation on each cell of a trainable partition of
unity. Our architecture exhibits both $h$- and $p$- refinement for regression
problems at the convergence rates expected from approximation theory, allowing
for consistency in solving variational problems. Moreover, this architecture,
its moments, and its partial derivatives can all be integrated exactly,
obviating a reliance on sampling or quadrature and enabling error-free
computation of variational forms. We demonstrate the success of our network on
a range of regression and variational problems that illustrate the consistency
and exact integrability of our network architecture.
- Abstract(参考訳): ニューラルネットワークを使って変分問題や、他の科学的な機械学習タスクを解決するのは、一貫性の欠如と、ニューラルネットワークアーキテクチャに関わる表現を正確に統合できないためである。
これらの制約に対処するため, 自由結び目B1-スプライン基底関数と, 演算子混合モデルを組み合わせた新しいニューラルネットワークアーキテクチャを定式化する。
効果的に、我々のアーキテクチャは、訓練可能なユニティの分割のそれぞれのセル上で分割多項式近似を行う。
我々のアーキテクチャは、近似理論から期待される収束率での回帰問題を$h$-と$p$-に洗練し、変分問題を解くための一貫性を与える。
さらに、このアーキテクチャ、モーメント、部分微分はすべて正確に統合でき、サンプリングや二次に依存し、変分形式の誤りのない計算を可能にする。
ネットワークアーキテクチャの一貫性と正確な統合性を示す様々な回帰問題と変分問題において、我々のネットワークの成功を実証する。
関連論文リスト
- Neural Control Variates with Automatic Integration [49.91408797261987]
本稿では,任意のニューラルネットワークアーキテクチャから学習可能なパラメトリック制御関数を構築するための新しい手法を提案する。
我々はこのネットワークを用いて積分器の反微分を近似する。
我々はウォーク・オン・スフィア・アルゴリズムを用いて偏微分方程式を解くために本手法を適用した。
論文 参考訳(メタデータ) (2024-09-23T06:04:28Z) - Multilevel CNNs for Parametric PDEs based on Adaptive Finite Elements [0.0]
高次元パラメータ依存偏微分方程式の多値性を利用するニューラルネットワークアーキテクチャが提案されている。
ネットワークは適応的に洗練された有限要素メッシュのデータで訓練される。
適応型マルチレベルスキームに対して完全収束と複雑性解析を行う。
論文 参考訳(メタデータ) (2024-08-20T13:32:11Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible Neural Network (INN) は、設計によって可逆性を持つニューラルネットワークアーキテクチャである。
その可逆性とヤコビアンのトラクタビリティのおかげで、IGNは確率的モデリング、生成的モデリング、表現的学習など、さまざまな機械学習応用がある。
論文 参考訳(メタデータ) (2022-04-15T10:45:26Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Connections between Numerical Algorithms for PDEs and Neural Networks [8.660429288575369]
偏微分方程式(PDE)とニューラルネットワークの数値アルゴリズム間の多数の構造的関係について検討する。
私たちのゴールは、豊富な数学的基礎をPDEの世界からニューラルネットワークに移すことです。
論文 参考訳(メタデータ) (2021-07-30T16:42:45Z) - Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems [3.660098145214465]
我々は,合成関数とそのニューラルネットワーク近似の近似理論を開発した。
構成関数の重要な特徴の集合と,ニューラルネットワークの特徴と複雑性の関係を同定する。
関数近似に加えて、ニューラルネットワークの誤差上限の式もいくつか証明する。
論文 参考訳(メタデータ) (2020-12-03T04:40:25Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。