論文の概要: An interdisciplinary exploration of trade-offs between energy, privacy and accuracy aspects of data
- arxiv url: http://arxiv.org/abs/2410.00069v2
- Date: Sat, 12 Oct 2024 14:38:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 15:09:43.548848
- Title: An interdisciplinary exploration of trade-offs between energy, privacy and accuracy aspects of data
- Title(参考訳): データのエネルギー・プライバシー・正確性間のトレードオフに関する学際的研究
- Authors: Pepijn de Reus, Kyra Dresen, Ana Oprescu, Kristina Irion, Ans Kolk,
- Abstract要約: デジタル時代は、ICTのエネルギー消費の増加や個人データ処理のプライバシー保護など、多くの社会的課題を提起してきた。
本稿では,学際探索における機械学習の精度に関する両側面について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The digital era has raised many societal challenges, including ICT's rising energy consumption and protecting privacy of personal data processing. This paper considers both aspects in relation to machine learning accuracy in an interdisciplinary exploration. We first present a method to measure the effects of privacy-enhancing techniques on data utility and energy consumption. The environmental-privacy-accuracy trade-offs are discovered through an experimental set-up. We subsequently take a storytelling approach to translate these technical findings to experts in non-ICT fields. We draft two examples for a governmental and auditing setting to contextualise our results. Ultimately, users face the task of optimising their data processing operations in a trade-off between energy, privacy, and accuracy considerations where the impact of their decisions is context-sensitive.
- Abstract(参考訳): デジタル時代は、ICTのエネルギー消費の増加やパーソナルデータ処理のプライバシー保護など、多くの社会的課題を提起してきた。
本稿では,学際探索における機械学習の精度に関する両側面について考察する。
まず,プライバシ向上技術がデータ有用性やエネルギー消費に与える影響を計測する手法を提案する。
環境プライバシーと精度のトレードオフは、実験的なセットアップによって発見されます。
我々はその後、これらの技術発見をICT以外の分野の専門家に翻訳するためにストーリーテリングアプローチを採っている。
我々は、その結果を文脈化するために、政府および監査設定のための2つの例を作成した。
究極的には、ユーザーは、エネルギー、プライバシ、そして意思決定の影響が文脈に敏感である場合の正確性の間のトレードオフの中で、データ処理操作を最適化するタスクに直面します。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Centering Policy and Practice: Research Gaps around Usable Differential Privacy [12.340264479496375]
我々は、差分プライバシーは理論上はクリーンな定式化であるが、実際は重大な課題を提起していると論じている。
差分プライバシーの約束と現実世界のユーザビリティのギャップを埋めるために、研究者と実践者は協力しなければなりません。
論文 参考訳(メタデータ) (2024-06-17T21:32:30Z) - MaSS: Multi-attribute Selective Suppression for Utility-preserving Data Transformation from an Information-theoretic Perspective [10.009178591853058]
本稿では,このユーティリティ保護プライバシ保護問題に対する情報理論の形式的定義を提案する。
我々は、ターゲットデータセットからセンシティブな属性を抑えることができるデータ駆動学習可能なデータ変換フレームワークを設計する。
その結果,様々な構成下での手法の有効性と一般化性を示した。
論文 参考訳(メタデータ) (2024-05-23T18:35:46Z) - Synergizing Privacy and Utility in Data Analytics Through Advanced Information Theorization [2.28438857884398]
本稿では,高次元画像データに適したノイズ注入技術,ロバストな特徴抽出のための変分オートエンコーダ(VAE),構造化データプライバシに最適化された期待最大化(EM)アプローチの3つの高度なアルゴリズムを紹介する。
本手法は,機密属性と変換データ間の相互情報を著しく低減し,プライバシーを向上する。
この研究は、さまざまなデータタイプにまたがってプライバシ保護アルゴリズムをデプロイするための柔軟で効果的な戦略を提供することによって、この分野に貢献する。
論文 参考訳(メタデータ) (2024-04-24T22:58:42Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - UN Handbook on Privacy-Preserving Computation Techniques [14.63213847614646]
本稿では,機密データの統計的解析におけるプライバシー保護手法について述べる。
この文書の情報は、統計学者、データサイエンティスト、データキュレーター、アーキテクト、ITスペシャリスト、およびセキュリティおよび情報保証スペシャリストによって使用されることを意図している。
論文 参考訳(メタデータ) (2023-01-15T19:43:40Z) - Mitigating Sovereign Data Exchange Challenges: A Mapping to Apply
Privacy- and Authenticity-Enhancing Technologies [67.34625604583208]
AET(Authenticity Enhancing Technologies)とPET(Privacy-Enhancing Technologies)は、SDE(Sovereign Data Exchange)に関与していると考えられている。
PETとAETは技術的に複雑であり、採用を妨げる。
本研究は,挑戦指向技術マッピングを実証的に構築する。
論文 参考訳(メタデータ) (2022-06-20T08:16:42Z) - Compressive analysis and the Future of Privacy [0.5857406612420462]
これにはデータ圧縮、データエンコーディング、データ暗号化、ハッシュが含まれる。
本稿では、カスタマイズ可能な個人のプライバシーを実現するための技術の可能性について分析する。
私たちは、プライバシー保護フレームワークとポリシーを確立するための大胆なニーズと、直感的なデジタルサービスアンサンブルの快適さとプライバシとのトレードオフを個人がどうやって達成できるかを列挙します。
論文 参考訳(メタデータ) (2020-06-06T10:33:35Z) - Beyond privacy regulations: an ethical approach to data usage in
transportation [64.86110095869176]
本稿では,フェデレート機械学習を交通分野に適用する方法について述べる。
フェデレートラーニングは、ユーザのプライバシを尊重しつつ、プライバシに敏感なデータを処理可能にする方法だと考えています。
論文 参考訳(メタデータ) (2020-04-01T15:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。