論文の概要: Stochastic Inverse Problem: stability, regularization and Wasserstein gradient flow
- arxiv url: http://arxiv.org/abs/2410.00229v1
- Date: Mon, 30 Sep 2024 20:56:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 06:56:01.897539
- Title: Stochastic Inverse Problem: stability, regularization and Wasserstein gradient flow
- Title(参考訳): 確率的逆問題:安定性、正則化およびワッサーシュタイン勾配流
- Authors: Qin Li, Maria Oprea, Li Wang, Yunan Yang,
- Abstract要約: 物理科学や生物学における逆問題はしばしば、ランダムな未知のパラメータを復元する。
本稿では, この問題の3つの側面として, 直接定式化, 正規化による変分, 勾配流による最適化について考察する。
- 参考スコア(独自算出の注目度): 7.110337170229741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse problems in physical or biological sciences often involve recovering an unknown parameter that is random. The sought-after quantity is a probability distribution of the unknown parameter, that produces data that aligns with measurements. Consequently, these problems are naturally framed as stochastic inverse problems. In this paper, we explore three aspects of this problem: direct inversion, variational formulation with regularization, and optimization via gradient flows, drawing parallels with deterministic inverse problems. A key difference from the deterministic case is the space in which we operate. Here, we work within probability space rather than Euclidean or Sobolev spaces, making tools from measure transport theory necessary for the study. Our findings reveal that the choice of metric -- both in the design of the loss function and in the optimization process -- significantly impacts the stability and properties of the optimizer.
- Abstract(参考訳): 物理科学や生物学における逆問題はしばしば、ランダムな未知のパラメータを復元する。
追従量は未知のパラメータの確率分布であり、測定値と整合したデータを生成する。
その結果、これらの問題は確率的逆問題として自然に定式化される。
本稿では, 直接反転, 正規化による変分定式化, 勾配流による最適化, 決定論的逆問題による並列化の3つの側面について検討する。
決定論的な場合との大きな違いは、我々が操作する空間である。
ここでは、ユークリッド空間やソボレフ空間よりも確率空間内で働き、研究に必要な輸送理論の測定ツールを作成する。
その結果、損失関数の設計と最適化プロセスの両方において、計量の選択が最適化器の安定性と特性に大きな影響を及ぼすことが明らかとなった。
関連論文リスト
- Benign overfitting in Fixed Dimension via Physics-Informed Learning with Smooth Inductive Bias [8.668428992331808]
我々は,線形逆問題に対処する際,カーネルリッジ(レス)回帰のためのソボレフノルム学習曲線を開発した。
この結果から, 逆問題におけるPDE演算子は分散を安定化し, 固定次元問題に対して良性オーバーフィッティングを行うことが可能であることがわかった。
論文 参考訳(メタデータ) (2024-06-13T14:54:30Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Source Condition Double Robust Inference on Functionals of Inverse
Problems [71.42652863687117]
線形逆問題に対する解の線形汎関数として定義されるパラメータの推定を考察する。
本稿では,第1のソース条件である二重ロバスト推論法を提案する。
論文 参考訳(メタデータ) (2023-07-25T19:54:46Z) - An information field theory approach to Bayesian state and parameter estimation in dynamical systems [0.0]
本稿では、連続時間決定論的力学系に適した状態とパラメータ推定のためのスケーラブルなベイズ的手法を開発する。
システム応答の関数空間に物理インフォームドされた事前確率測度を構築し、物理を満たす関数がより高い確率で現れるようにする。
論文 参考訳(メタデータ) (2023-06-03T16:36:43Z) - Inverse Models for Estimating the Initial Condition of Spatio-Temporal
Advection-Diffusion Processes [5.814371485767541]
逆問題とは、観測データを用いて物理過程の未知のパラメータについて推論することである。
本稿では,空間的に疎いデータストリームを用いた時空間対流拡散過程の初期状態の推定について検討する。
論文 参考訳(メタデータ) (2023-02-08T15:30:16Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Uncertainty Quantification for Transport in Porous media using
Parameterized Physics Informed neural Networks [0.0]
本稿では,貯水池工学における不確実性定量化問題に取り組むために,インフォームドニューラルネットワーク(P-PINN)のパラメトリゼーションを提案する。
異種多孔質媒質中の不混和性二相流変位(Buckley-Leverett問題)によるアプローチを実証する。
PINNは不確実性空間のパラメータ化を適切に行うことで,アンサンブル実現とモーメントを密接に一致させる解を生成できることを示す。
論文 参考訳(メタデータ) (2022-05-19T06:23:23Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
分散最適化問題は機械学習や統計学で広く発生する。
本稿では,変分輸送と呼ばれる粒子に基づく新しいアルゴリズムを提案する。
目的関数がpolyak-Lojasiewicz (PL) (Polyak, 1963) の機能バージョンと滑らかな条件を満たすとき、変分輸送は線形に収束することを示す。
論文 参考訳(メタデータ) (2020-12-21T18:33:13Z) - Consistency analysis of bilevel data-driven learning in inverse problems [1.0705399532413618]
本稿では,データからの正規化パラメータの適応学習を最適化により検討する。
線形逆問題に対する我々のフレームワークの実装方法を示す。
勾配降下法を用いてオンライン数値スキームを導出する。
論文 参考訳(メタデータ) (2020-07-06T12:23:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。