論文の概要: Recovering Manifold Structure Using Ollivier-Ricci Curvature
- arxiv url: http://arxiv.org/abs/2410.01149v1
- Date: Wed, 2 Oct 2024 01:00:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 23:00:28.019476
- Title: Recovering Manifold Structure Using Ollivier-Ricci Curvature
- Title(参考訳): Ollivier-Ricci曲率を用いたマニフォールド構造の復元
- Authors: Tristan Luca Saidi, Abigail Hickok, Andrew J. Blumberg,
- Abstract要約: 我々は、Ollivier-Ricci曲率と推定距離歪みに基づく基準を用いて、隣り合うグラフからスプリアスエッジをプルーする新しいアルゴリズムであるORC-ManLを紹介する。
我々のモチベーションは多様体学習から来ており、最も近い近傍グラフを生成するデータが低次元多様体からのノイズのあるサンプルで構成されている場合、周辺空間をショートカットするエッジは、データ多様体に沿って配置されるエッジよりも負のオリヴィエ・リッチ曲率を持つことを示す。
- 参考スコア(独自算出の注目度): 1.9458156037869137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce ORC-ManL, a new algorithm to prune spurious edges from nearest neighbor graphs using a criterion based on Ollivier-Ricci curvature and estimated metric distortion. Our motivation comes from manifold learning: we show that when the data generating the nearest-neighbor graph consists of noisy samples from a low-dimensional manifold, edges that shortcut through the ambient space have more negative Ollivier-Ricci curvature than edges that lie along the data manifold. We demonstrate that our method outperforms alternative pruning methods and that it significantly improves performance on many downstream geometric data analysis tasks that use nearest neighbor graphs as input. Specifically, we evaluate on manifold learning, persistent homology, dimension estimation, and others. We also show that ORC-ManL can be used to improve clustering and manifold learning of single-cell RNA sequencing data. Finally, we provide empirical convergence experiments that support our theoretical findings.
- Abstract(参考訳): 我々は、Ollivier-Ricci曲率と推定距離歪みに基づく基準を用いて、隣り合うグラフからスプリアスエッジをプルーする新しいアルゴリズムであるORC-ManLを紹介する。
我々のモチベーションは多様体学習から来ており、最も近い近傍グラフを生成するデータが低次元多様体からのノイズのあるサンプルで構成されている場合、周辺空間をショートカットするエッジは、データ多様体に沿って配置されるエッジよりも負のオリヴィエ・リッチ曲率を持つことを示す。
提案手法は代替プルーニング法よりも優れており,隣接するグラフを入力として使用する下流の幾何データ解析タスクの性能を著しく向上することを示す。
具体的には、多様体学習、永続ホモロジー、次元推定等について評価する。
また,ORC-ManLは単一セルRNAシークエンシングデータのクラスタリングや多様体学習に利用できることを示す。
最後に, 理論的知見を裏付ける経験的収束実験を行った。
関連論文リスト
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
論文 参考訳(メタデータ) (2024-09-08T18:55:57Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - Study of Manifold Geometry using Multiscale Non-Negative Kernel Graphs [32.40622753355266]
データの幾何学的構造を研究するための枠組みを提案する。
我々は最近導入された非負のカーネル回帰グラフを用いて、点密度、固有次元、およびデータ多様体(曲率)の線型性を推定する。
論文 参考訳(メタデータ) (2022-10-31T17:01:17Z) - Diffusion Models for Causal Discovery via Topological Ordering [20.875222263955045]
emphTopological ordering approachは、グラフ空間ではなく置換を探索することによって因果発見の最適化空間を減少させる。
ANMsの場合、データログのようなemphHessianは、葉ノードを因果グラフで見つけるのに使用することができ、トポロジ的順序付けを可能にする。
ニューラルネットワークを再トレーニングすることなく、学習したヘッセンを更新する理論を導入し、サンプルのサブセットによる計算が注文の正確な近似を与えることを示す。
論文 参考訳(メタデータ) (2022-10-12T13:36:29Z) - From Spectral Graph Convolutions to Large Scale Graph Convolutional
Networks [0.0]
グラフ畳み込みネットワーク(GCN)は、様々なタスクにうまく適用された強力な概念であることが示されている。
古典グラフ理論の関連部分を含むGCNの定義への道を開いた理論を考察する。
論文 参考訳(メタデータ) (2022-07-12T16:57:08Z) - The Manifold Hypothesis for Gradient-Based Explanations [55.01671263121624]
勾配に基づく説明アルゴリズムは知覚的に整合した説明を提供する。
特徴属性がデータの接する空間と一致しているほど、知覚的に一致している傾向にあることを示す。
説明アルゴリズムは、その説明をデータ多様体と整合させるよう積極的に努力すべきである。
論文 参考訳(メタデータ) (2022-06-15T08:49:24Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:50:38Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。