論文の概要: The potential of LLM-generated reports in DevSecOps
- arxiv url: http://arxiv.org/abs/2410.01899v1
- Date: Wed, 2 Oct 2024 18:01:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 10:04:30.298272
- Title: The potential of LLM-generated reports in DevSecOps
- Title(参考訳): DevSecOpsにおけるLCMレポートの可能性
- Authors: Nikolaos Lykousas, Vasileios Argyropoulos, Fran Casino,
- Abstract要約: アラート疲労は、DevSecOpsパラダイムを使用してソフトウェアチームが直面する一般的な問題である。
本稿では,LCMが実用的なセキュリティレポートを生成する可能性について検討する。
DevSecOpsにこれらのレポートを統合することで、注意の飽和と警告疲労を軽減することができる。
- 参考スコア(独自算出の注目度): 3.4888132404740797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alert fatigue is a common issue faced by software teams using the DevSecOps paradigm. The overwhelming number of warnings and alerts generated by security and code scanning tools, particularly in smaller teams where resources are limited, leads to desensitization and diminished responsiveness to security warnings, potentially exposing systems to vulnerabilities. This paper explores the potential of LLMs in generating actionable security reports that emphasize the financial impact and consequences of detected security issues, such as credential leaks, if they remain unaddressed. A survey conducted among developers indicates that LLM-generated reports significantly enhance the likelihood of immediate action on security issues by providing clear, comprehensive, and motivating insights. Integrating these reports into DevSecOps workflows can mitigate attention saturation and alert fatigue, ensuring that critical security warnings are addressed effectively.
- Abstract(参考訳): アラート疲労は、DevSecOpsパラダイムを使用してソフトウェアチームが直面する一般的な問題である。
セキュリティとコードスキャンツールによって生成される圧倒的な数の警告と警告、特にリソースが限られている小さなチームでは、セキュリティ警告に対する脱感作と応答性の低下を招き、脆弱性にシステムを公開する可能性がある。
本稿では,認証漏洩などの検出されたセキュリティ問題に対する金銭的影響と結果を強調する,行動可能なセキュリティレポート作成におけるLCMの可能性について検討する。
開発者による調査では、LCMが生成したレポートは、明確で包括的でモチベーションの高い洞察を提供することによって、セキュリティ問題に対する即時的なアクションの可能性を大幅に高めることが示されている。
DevSecOpsワークフローにこれらのレポートを統合することで、注意飽和と警告疲労を緩和し、重要なセキュリティ警告が効果的に対処できる。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects [0.11999555634662631]
本研究では,オープンソースソフトウェア(OSS)プロジェクトの依存関係の脆弱性について検討する。
古い依存関係やメンテナンスされていない依存関係に共通する問題を特定しました。
その結果, 直接的な依存関係の削減と, 強力なセキュリティ記録を持つ高度に確立されたライブラリの優先順位付けが, ソフトウェアセキュリティの状況を改善する効果的な戦略であることが示唆された。
論文 参考訳(メタデータ) (2024-08-26T13:46:48Z) - Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
重大言語モデル(LLM)が悪意のある命令から脅威を守るためには、安全性の調整が不可欠である。
近年の研究では、過大な安全性の問題により、安全性に配慮したLCMは、良質な問い合わせを拒否する傾向にあることが明らかになっている。
過大な安全性の懸念を和らげるために,SCANS法を提案する。
論文 参考訳(メタデータ) (2024-08-21T10:01:34Z) - Tamper-Resistant Safeguards for Open-Weight LLMs [57.90526233549399]
オープンウェイトLLMにタンパ耐性保護具を組み込む方法を開発した。
本手法は良性を保持しながらタンパー抵抗を大幅に改善する。
以上の結果から, タンパー抵抗はトラクタブルな問題であることがわかった。
論文 参考訳(メタデータ) (2024-08-01T17:59:12Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
LLM(Large Language Models)の出現は、自然言語処理(NLP)内の様々な領域で大きな人気を集め、膨大なパワーを誇っている。
本稿では,各脆弱性部の知見を合成し,新たな研究・開発の方向性を提案する。
現在の脆弱性の焦点を理解することで、将来のリスクを予測し軽減できます。
論文 参考訳(メタデータ) (2024-07-30T04:08:00Z) - Towards Effectively Detecting and Explaining Vulnerabilities Using Large Language Models [17.96542494363619]
大規模言語モデル(LLM)は、複雑なコンテキストを解釈する際、顕著な能力を示した。
本稿では,脆弱性の検出と説明の両面において,LSMの能力について検討する。
脆弱性説明のための特別な微調整の下で、LLMVulExpはコードの脆弱性の種類を検出するだけでなく、コードコンテキストを分析して原因、場所、修正提案を生成する。
論文 参考訳(メタデータ) (2024-06-14T04:01:25Z) - Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices [4.927763944523323]
大規模言語モデル(LLM)は、自然言語処理(NLP)のランドスケープを大きく変えた。
本研究は,5つのテーマの観点から,LLMに関するセキュリティとプライバシの懸念を徹底的に調査する。
本稿は, LLMの安全性とリスク管理を強化するために, 今後の研究に期待できる道筋を提案する。
論文 参考訳(メタデータ) (2024-03-19T07:10:58Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - TrustAgent: Towards Safe and Trustworthy LLM-based Agents [50.33549510615024]
本稿では,エージェント・コンスティチューションをベースとしたエージェント・フレームワークであるTrustAgentについて述べる。
提案枠組みは,計画立案前のモデルに安全知識を注入する事前計画戦略,計画立案時の安全性を高める内計画戦略,計画後検査による安全性を確保する後計画戦略の3つの戦略要素を通じて,エージェント憲法の厳格な遵守を保証する。
論文 参考訳(メタデータ) (2024-02-02T17:26:23Z) - Use of LLMs for Illicit Purposes: Threats, Prevention Measures, and
Vulnerabilities [14.684194175806203]
大規模言語モデル(LLM)は詐欺、偽造、マルウェアの発生に誤用されることがある。
本稿では,LSMの生成能力による脅威と,そのような脅威に対処するための予防措置と,不完全な予防措置に起因する脆弱性との関係を分類する。
論文 参考訳(メタデータ) (2023-08-24T14:45:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。