論文の概要: Adapting Segment Anything Model to Melanoma Segmentation in Microscopy Slide Images
- arxiv url: http://arxiv.org/abs/2410.02207v1
- Date: Thu, 3 Oct 2024 04:40:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 08:06:03.789944
- Title: Adapting Segment Anything Model to Melanoma Segmentation in Microscopy Slide Images
- Title(参考訳): 顕微鏡スライディング画像におけるメラノーマセグメンテーションへのセグメンテーションモデルの適用
- Authors: Qingyuan Liu, Avideh Zakhor,
- Abstract要約: 本稿では,Segment Anything Model (SAM) を用いた顕微鏡スライド画像の自動メラノーマ分割法を提案する。
提案手法では,初期セグメンテーションモデルを用いて予備セグメンテーションマスクを生成し,SAMのプロンプトに使用する。
実験の結果,IoUではベースラインセグフォーマを9.1%上回った。
- 参考スコア(独自算出の注目度): 0.1534667887016089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Melanoma segmentation in Whole Slide Images (WSIs) is useful for prognosis and the measurement of crucial prognostic factors such as Breslow depth and primary invasive tumor size. In this paper, we present a novel approach that uses the Segment Anything Model (SAM) for automatic melanoma segmentation in microscopy slide images. Our method employs an initial semantic segmentation model to generate preliminary segmentation masks that are then used to prompt SAM. We design a dynamic prompting strategy that uses a combination of centroid and grid prompts to achieve optimal coverage of the super high-resolution slide images while maintaining the quality of generated prompts. To optimize for invasive melanoma segmentation, we further refine the prompt generation process by implementing in-situ melanoma detection and low-confidence region filtering. We select Segformer as the initial segmentation model and EfficientSAM as the segment anything model for parameter-efficient fine-tuning. Our experimental results demonstrate that this approach not only surpasses other state-of-the-art melanoma segmentation methods but also significantly outperforms the baseline Segformer by 9.1% in terms of IoU.
- Abstract(参考訳): Whole Slide Images(WSIs)における黒色腫の分画は,ブレスロー深さや原発性浸潤性腫瘍の大きさといった重要な予後因子の測定に有用である。
本稿では,Segment Anything Model (SAM) を用いた顕微鏡スライド画像の自動メラノーマ分割法を提案する。
提案手法では,初期セグメンテーションモデルを用いて予備セグメンテーションマスクを生成し,SAMのプロンプトに使用する。
我々は,超高解像度スライド画像の最適カバレッジを実現するために,セントロイドとグリッドプロンプトを組み合わせた動的プロンプト戦略を設計し,生成プロンプトの品質を維持した。
侵襲性メラノーマセグメンテーションを最適化するために,インサイトメラノーマ検出と低信頼領域フィルタリングを併用することにより,プロンプト生成プロセスをさらに改善する。
我々は、Segformerを初期セグメンテーションモデルとし、EfficientSAMをパラメータ効率の微調整のためのセグメントアプライズモデルとして選択する。
実験の結果,本手法は他のメラノーマセグメンテーション法に勝るだけでなく,IoUでは9.1%の精度でベースラインセグフォーマを著しく上回っていることがわかった。
関連論文リスト
- ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
論文 参考訳(メタデータ) (2024-08-26T08:59:22Z) - MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation [3.2846676620336632]
眼科画像分割は眼疾患の診断において重要な基礎となる。
トランスフォーマーベースのモデルはこれらの制限に対処するが、かなりの計算オーバーヘッドをもたらす。
本稿では,眼内画像分割に適したMixedモデルであるMM-UNetを紹介する。
論文 参考訳(メタデータ) (2024-08-16T08:34:50Z) - SAM-EG: Segment Anything Model with Egde Guidance framework for efficient Polyp Segmentation [6.709243857842895]
本稿では,ポリプセグメンテーションのための小さなセグメンテーションモデルを用いて,コスト問題に対処するフレームワークを提案する。
本研究では,エッジ情報を画像特徴に組み込むEdge Guidingモジュールを提案する。
我々の小型モデルは、最先端の手法で競争結果を得ることで、その効果を実証する。
論文 参考訳(メタデータ) (2024-06-21T01:42:20Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
Mask-Enhanced SAM (M-SAM) は, 腫瘍の3次元セグメント化に適した革新的なアーキテクチャである。
本稿では,M-SAM内におけるMask-Enhanced Adapter (MEA) を提案する。
我々のM-SAMは高いセグメンテーション精度を達成し、またロバストな一般化を示す。
論文 参考訳(メタデータ) (2024-03-09T13:37:02Z) - Generalizable Entity Grounding via Assistance of Large Language Model [77.07759442298666]
本稿では,長いキャプションから密接な視覚的実体を抽出する手法を提案する。
本研究では,意味代名詞の抽出に大規模なマルチモーダルモデル,エンティティレベルのセグメンテーションを生成するクラス-aセグメンテーションモデル,および各セグメンテーション名詞と対応するセグメンテーションマスクを関連付けるマルチモーダル特徴融合モジュールを利用する。
論文 参考訳(メタデータ) (2024-02-04T16:06:05Z) - Morphology-Enhanced CAM-Guided SAM for weakly supervised Breast Lesion Segmentation [7.747608350830482]
早期乳房超音波画像における病変の断片化を弱体化するための新しい枠組みを提案する。
本手法は,形態的拡張とクラスアクティベーションマップ(CAM)誘導局所化を用いた。
このアプローチはピクセルレベルのアノテーションを必要としないため、データアノテーションのコストが削減される。
論文 参考訳(メタデータ) (2023-11-18T22:06:04Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - Segmentation of Cellular Patterns in Confocal Images of Melanocytic
Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net) [2.0487455621441377]
マルチスケールデコーダネットワーク(MED-Net)は,パターンのクラスに定量的なラベル付けを行う。
メラノサイト病変の117個の反射共焦点顕微鏡(RCM)モザイクの非重畳分割について,本モデルを訓練・試験した。
論文 参考訳(メタデータ) (2020-01-03T22:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。