論文の概要: A comparison on constrain encoding methods for quantum approximate optimization algorithm
- arxiv url: http://arxiv.org/abs/2410.04030v1
- Date: Sat, 5 Oct 2024 04:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 14:40:27.471902
- Title: A comparison on constrain encoding methods for quantum approximate optimization algorithm
- Title(参考訳): 量子近似最適化アルゴリズムにおける制約符号化法の比較
- Authors: Yiwen Liu, Qingyue Jiao, Yidong Zhou, Zhiding Liang, Yiyu Shi, Ke Wan, Shangjie Guo,
- Abstract要約: 線形制約をQAOAに組み込むための3つの異なる戦略を数値的に比較する。
本研究は,knapsack 問題を事例として,これらの手法の有効性と有効性を評価するものである。
- 参考スコア(独自算出の注目度): 6.479723712962498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) represents a significant opportunity for practical quantum computing applications, particularly in the era before error correction is fully realized. This algorithm is especially relevant for addressing constraint satisfaction problems (CSPs), which are critical in various fields such as supply chain management, energy distribution, and financial modeling. In our study, we conduct a numerical comparison of three different strategies for incorporating linear constraints into QAOA: transforming them into an unconstrained format, introducing penalty dephasing, and utilizing the quantum Zeno effect. We assess the efficiency and effectiveness of these methods using the knapsack problem as a case study. Our findings provide insights into the potential applicability of different encoding methods for various use cases.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、特に誤り訂正が完全に実現される前の時代に、実用的な量子コンピューティングアプリケーションにとって重要な機会である。
このアルゴリズムは、サプライチェーン管理、エネルギー分布、金融モデリングなど、様々な分野において重要な制約満足度問題(CSP)に対処するために特に有用である。
本研究では、線形制約をQAOAに組み込むための3つの異なる戦略を数値的に比較する。
本研究は,knapsack 問題を事例として,これらの手法の有効性と有効性を評価するものである。
本研究は,様々なユースケースにおいて,異なるエンコーディング手法の適用可能性について考察した。
関連論文リスト
- Benchmarking Variational Quantum Algorithms for Combinatorial Optimization in Practice [0.0]
変分量子アルゴリズム、特に変分量子固有解器の変種は最適化(CO)問題に対処するために提案されている。
ベンチマークとしてMax-Cutを用いてCO問題を解く上で,このスケーリング結果がどのような意味を持つのかを数値的に検討する。
論文 参考訳(メタデータ) (2024-08-06T09:57:34Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - A Novel Knapsack-based Financial Portfolio Optimization using Quantum Approximate Optimization Algorithm [2.6603181502541986]
本稿では,量子ウォークミキサーの量子計算能力と量子近似最適化アルゴリズム(QAOA)を用いて,NPハード問題による課題に対処する手法を提案する。
p>=3の回路層を用いたポートフォリオ最適化手法の近似比を,古典的なknapsack問題の解法と比較した。
論文 参考訳(メタデータ) (2024-02-11T08:20:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Hybrid Quantum Algorithms integrating QAOA, Penalty Dephasing and Zeno
Effect for Solving Binary Optimization Problems with Multiple Constraints [5.259170150405252]
本稿では,制約のサブセットを解決するために標準イジング・ハミルトニアン(Ising Hamiltonian)を併用したハイブリッドフレームワークを提案する。
これらの非Ising制約の解決は、ペナルティの軽視または量子ゼノ効果によって達成される。
論文 参考訳(メタデータ) (2023-05-14T03:49:10Z) - Portfolio Optimization with Digitized-Counterdiabatic Quantum Algorithms [1.1682745573995112]
我々は、NISQ時代の産業応用における量子優位性にアプローチするための先進パラダイムとして、デジタルカウンテルダイアバティック量子コンピューティングを考察する。
本分析は, 近似反断熱法を導入すると, 得られたディジタル量子アルゴリズムの成功確率を大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T18:55:02Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
制約のないバイナリ最適化の問題を解決するために,光コヒーレントIsingマシンにヒントを得たアルゴリズムを提案する。
提案アルゴリズムを既存のPUBOアルゴリズムに対してベンチマークし,その優れた性能を観察する。
タンパク質の折り畳み問題や量子化学問題へのアルゴリズムの適用は、PUBO問題による電子構造問題の近似の欠点に光を当てる。
論文 参考訳(メタデータ) (2021-06-24T16:39:31Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
政治政策の最適化は強化学習において難しい問題である。
オフポリシーアルゴリズムはメモリ効率が高く、オフポリシーサンプルから学ぶことができる。
論文 参考訳(メタデータ) (2020-09-14T16:22:46Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。