論文の概要: Optimizing AI Reasoning: A Hamiltonian Dynamics Approach to Multi-Hop Question Answering
- arxiv url: http://arxiv.org/abs/2410.04415v2
- Date: Tue, 8 Oct 2024 08:51:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-02 08:00:46.480605
- Title: Optimizing AI Reasoning: A Hamiltonian Dynamics Approach to Multi-Hop Question Answering
- Title(参考訳): AI推論の最適化 - マルチホップ質問回答に対するハミルトンのダイナミクスアプローチ
- Authors: Javier Marin,
- Abstract要約: 埋め込み空間における推論連鎖をハミルトニアン系にマッピングする新しい枠組みを提案する。
このフレームワークを用いて,マルチホップ質問応答タスクから推論チェーンの大規模データセットを解析する。
有効な推論チェーンはハミルトンのエネルギーを減らし、より多くの情報を取得して正しい質問に答える最良のトレードオフを作る方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an innovative approach to analyzing and improving multi-hop reasoning in AI systems by drawing inspiration from Hamiltonian mechanics. We propose a novel framework that maps reasoning chains in embedding spaces to Hamiltonian systems, allowing us to leverage powerful analytical tools from classical physics. Our method defines a Hamiltonian function that balances the progression of reasoning (kinetic energy) against the relevance to the question at hand (potential energy). Using this framework, we analyze a large dataset of reasoning chains from a multi-hop question-answering task, revealing intriguing patterns that distinguish valid from invalid reasoning. We show that valid reasoning chains have lower Hamiltonian energy and move in ways that make the best trade-off between getting more information and answering the right question. Furthermore, we demonstrate the application of this framework to steer the creation of more efficient reasoning algorithms within AI systems. Our results not only provide new insights into the nature of valid reasoning but also open up exciting possibilities for physics-inspired approaches to understanding and improving artificial intelligence.
- Abstract(参考訳): 本稿では、ハミルトン力学からインスピレーションを得て、AIシステムにおけるマルチホップ推論の分析と改善のための革新的なアプローチを提案する。
埋め込み空間における推論連鎖をハミルトン系にマッピングし、古典物理学から強力な解析ツールを活用できる新しい枠組みを提案する。
本手法は、理論(運動エネルギー)の進行と手前の問題(ポテンシャルエネルギー)との関係をバランスさせるハミルトニアン関数を定義する。
このフレームワークを用いて,複数ホップ質問応答タスクから推論チェーンの大規模なデータセットを分析し,無効推論と有効推論を区別する興味深いパターンを明らかにする。
有効な推論チェーンはハミルトンのエネルギーを減らし、より多くの情報を取得して正しい質問に答える最良のトレードオフを作る方法を示す。
さらに、AIシステム内でより効率的な推論アルゴリズムの作成を支援するために、このフレームワークの応用を実証する。
私たちの結果は、有効な推論の性質に関する新たな洞察を提供するだけでなく、人工知能の理解と改善に対する物理学的なアプローチに対するエキサイティングな可能性も開きます。
関連論文リスト
- Weight-of-Thought Reasoning: Exploring Neural Network Weights for Enhanced LLM Reasoning [1.9797215742507548]
Weight-of-Thought(WoT)推論は、推論の前にニューラルネットワークの重みを調べて推論経路を特定する手法である。
WoTは、特に複雑な問題に対して、従来の手法よりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-04-14T18:56:29Z) - Cognitive Activation and Chaotic Dynamics in Large Language Models: A Quasi-Lyapunov Analysis of Reasoning Mechanisms [6.375329734462518]
本稿では,大規模言語モデルの推論機構の本質を明らかにする「認知活性化理論」を提案する。
実験により、モデルの情報の蓄積は非線形指数法則に従っており、Multilayer Perceptron (MLP) は最終的な出力においてより高い割合を占めることが示された。
本研究は, LLMの推論の解釈可能性に関するカオス理論の枠組みを提供し, モデル設計における創造性と信頼性のバランスをとるための潜在的経路を明らかにする。
論文 参考訳(メタデータ) (2025-03-15T08:15:10Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Distributional reasoning in LLMs: Parallel reasoning processes in multi-hop reasoning [8.609587510471943]
本稿では,大規模言語モデルにおける内部マルチホップ推論プロセスの新規かつ解釈可能な解析手法を提案する。
推論中、ネットワークの中間層は高度に解釈可能な埋め込みを生成する。
我々の発見は、LLMが推論タスクの解決に使っている戦略を明らかにするのに役立ち、人工知能から生まれる思考プロセスのタイプに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-06-19T21:36:40Z) - Learning Iterative Reasoning through Energy Diffusion [90.24765095498392]
我々は,エネルギー拡散による反復的推論(IRED)を紹介した。
IREDは入力条件と所望の出力の間の制約を表現するためにエネルギー関数を学ぶ。
IREDは、連続空間推論、離散空間推論、計画タスクにおいて既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-17T03:36:47Z) - Learning Hamiltonian neural Koopman operator and simultaneously sustaining and discovering conservation law [13.310284460452918]
本研究では,HNKO(Hanadian Neural Koopman Operator)を提案する。
我々は,HNKOとその拡張性能を,代表的物理系を用いて実証する。
この結果から,基礎となるシステムの事前知識と数学的理論を学習フレームワークに適切に供給することで,物理問題の解法における機械学習の能力を高めることが示唆された。
論文 参考訳(メタデータ) (2024-06-04T09:42:34Z) - Counterfactual and Semifactual Explanations in Abstract Argumentation: Formal Foundations, Complexity and Computation [19.799266797193344]
議論ベースのシステムは、意思決定プロセスをサポートしながら説明責任を欠くことが多い。
対実的・半実的な説明は解釈可能性のテクニックである。
本稿では,制約の弱いArgumentation Frameworkにおいて,逆ファクトおよび半ファクトのクエリを符号化可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T07:27:27Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
我々は、LMを、事前学習時に見られる間接的推論経路を集約することで、新たな結論を導出すると考えている。
我々は、推論経路を知識/推論グラフ上のランダムウォークパスとして定式化する。
複数のKGおよびCoTデータセットの実験と分析により、ランダムウォークパスに対するトレーニングの効果が明らかにされた。
論文 参考訳(メタデータ) (2024-02-05T18:25:51Z) - Leveraging Structured Information for Explainable Multi-hop Question
Answering and Reasoning [14.219239732584368]
本研究では,マルチホップ質問応答のための抽出された意味構造(グラフ)の構築と活用について検討する。
実験結果と人的評価の結果から、我々のフレームワークはより忠実な推論連鎖を生成し、2つのベンチマークデータセットのQA性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T05:32:39Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Chaining Simultaneous Thoughts for Numerical Reasoning [92.2007997126144]
テキストによる数値推論は、AIシステムにとって不可欠なスキルであるべきです。
これまでの研究は方程式の構造をモデル化することに集中し、様々な構造化デコーダを提案してきた。
我々は、有向非巡回グラフを用いてステップを推論する数値推論器CANTORを提案する。
論文 参考訳(メタデータ) (2022-11-29T18:52:06Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - Learning Iterative Reasoning through Energy Minimization [77.33859525900334]
ニューラルネットワークを用いた反復推論のための新しいフレームワークを提案する。
すべての出力に対してエネルギーランドスケープをパラメータ化するために、ニューラルネットワークをトレーニングします。
エネルギー最小化ステップとして反復推論の各ステップを実装し,最小限のエネルギー解を求める。
論文 参考訳(メタデータ) (2022-06-30T17:44:20Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamicsは、ニューラルネットワークに正確な長期予測、解釈可能性、データ効率の学習を与える。
我々は最近提案したハミルトンニューラルネットワークモデルについて、特に方法論に焦点を当てて体系的に調査した。
論文 参考訳(メタデータ) (2022-02-28T22:54:39Z) - From Philosophy to Interfaces: an Explanatory Method and a Tool Inspired
by Achinstein's Theory of Explanation [3.04585143845864]
人工知能(AI)における新しい説明法を提案する。
我々は、AIアルゴリズムのパイプラインに基づいた対話型説明を生成するための新しいアプローチを示す。
我々はIBMによるよく知られたXAIによる信用承認システムで仮説を検証した。
論文 参考訳(メタデータ) (2021-09-09T11:10:03Z) - Symplectic Learning for Hamiltonian Neural Networks [0.0]
Hamiltonian Neural Networks (HNN)は、統一された"グレーボックス"アプローチに向けた第一歩を踏み出した。
損失関数が異なるハミルトン系のシンプレクティック構造を利用する。
HNNが学習できる正確なハミルトン関数の存在を数学的に保証する。
論文 参考訳(メタデータ) (2021-06-22T13:33:12Z) - Dynamic Semantic Graph Construction and Reasoning for Explainable
Multi-hop Science Question Answering [50.546622625151926]
マルチホップQAのための説明可能性を得ながら,より有効な事実を活用できる新しいフレームワークを提案する。
a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(c) グラフ畳み込みネットワーク(GCN)を利用した事実レベルの関係モデリング,(c) 推論過程の導出を行う。
論文 参考訳(メタデータ) (2021-05-25T09:14:55Z) - Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering [35.40919477319811]
本稿では,事前学習された言語モデルにマルチホップ関係推論モジュールを組み込む新しい知識認識手法を提案する。
外部知識グラフから抽出したサブグラフに対して、マルチホップ、マルチリレーショナル推論を行う。
パスベースの推論手法とグラフニューラルネットワークを統合して、より優れた解釈性とスケーラビリティを実現する。
論文 参考訳(メタデータ) (2020-05-01T23:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。